Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.contributor.authorAngami, N. V.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:41Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:41Z-
dc.date.issued2019-
dc.identifier.citationTanveer, M., Pachori, R. B., & Angami, N. V. (2019). Entropy based features in FAWT framework for automated detection of epileptic seizure EEG signals. Paper presented at the Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, 1946-1952. doi:10.1109/SSCI.2018.8628733en_US
dc.identifier.isbn9781538692769-
dc.identifier.otherEID(2-s2.0-85062771141)-
dc.identifier.urihttps://doi.org/10.1109/SSCI.2018.8628733-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6509-
dc.description.abstractFlexible analytic wavelet transform (FAWT) is suitable for the study of oscillatory signals like electroencephalogram (EEG) signals with versatile features such as shift in-variance, tunable oscillatory properties and flexible time-frequency domain. In this paper, we propose an automated method for the classification of seizure and non-seizure EEG signals using FAWT and entropy-based features such as Stein's unbiased risk estimator (SURE) entropy, log energy entropy, and Shannon entropy. The obtained features are given as input to robust energy-based least squares twin support vector machines (RELS-TSVM) for classification. The proposed method has been implemented on publicly available epilepsy database (Bonn University EEG database) and is comparable with the existing methods with a maximum accuracy of 100% for the classification of seizure and non-seizure EEG signals. © 2018 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018en_US
dc.subjectArtificial intelligenceen_US
dc.subjectClassification (of information)en_US
dc.subjectElectroencephalographyen_US
dc.subjectFrequency domain analysisen_US
dc.subjectSupport vector machinesen_US
dc.subjectWavelet transformsen_US
dc.subjectAnalytic wavelet transformen_US
dc.subjectElectro-encephalogram (EEG)en_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectLeast squares twin support vector machinesen_US
dc.subjectOscillatory signalsen_US
dc.subjectSeizure and non-seizureen_US
dc.subjectStein's unbiased risk estimators (SURE)en_US
dc.subjectTime frequency domainen_US
dc.subjectBiomedical signal processingen_US
dc.titleEntropy based features in FAWT framework for automated detection of epileptic seizure EEG signalsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: