Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6512
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRichhariya, Bharaten_US
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:41Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:41Z-
dc.date.issued2019-
dc.identifier.citationRichhariya, B., & Tanveer, M. (2019). A fuzzy universum support vector machine based on information entropy doi:10.1007/978-981-13-0923-6_49en_US
dc.identifier.isbn9789811309229-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85051970641)-
dc.identifier.urihttps://doi.org/10.1007/978-981-13-0923-6_49-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6512-
dc.description.abstractUniversum-based support vector machines (USVMs) are known to give better generalization performance than standard SVM methods by incorporating prior information about the data. In datasets involving noise and outliers, this universum-based scheme is not so effective because the generated universum data points do not lie in between the two classes. In this paper, we propose a fuzzy universum support vector machine (FUSVM) by introducing the weights to the universum data points based on their information entropy. Since there is no standard approach of selecting the universum, our information entropy based approach is helpful in giving less weight to the outlier universum points and thus gives prior information about the data in an appropriate manner. In addition, we also propose a fuzzy-based approach for universum twin support vector machine named as fuzzy universum twin support vector machine (FUTSVM). Experimental results on several benchmark datasets indicate that, comparing to SVM, USVM, TWSVM and UTSVM our proposed FUSVM and FUTSVM have shown better generalization performance. © Springer Nature Singapore Pte Ltd 2019.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBenchmarkingen_US
dc.subjectNearest neighbor searchen_US
dc.subjectSignal processingen_US
dc.subjectStatisticsen_US
dc.subjectVectorsen_US
dc.subjectBenchmark datasetsen_US
dc.subjectFuzzy membershipen_US
dc.subjectGeneralization performanceen_US
dc.subjectInformation entropyen_US
dc.subjectK nearest neighbours (k-NN)en_US
dc.subjectPrior informationen_US
dc.subjectTwin support vector machinesen_US
dc.subjectUniversumen_US
dc.subjectSupport vector machinesen_US
dc.titleA fuzzy universum support vector machine based on information entropyen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: