Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6513
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDalal, M.en_US
dc.contributor.authorTanveer, M.en_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:42Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:42Z-
dc.date.issued2019-
dc.identifier.citationDalal, M., Tanveer, M., & Pachori, R. B. (2019). Automated identification system for focal EEG signals using fractal dimension of FAWT-based sub-bands signals doi:10.1007/978-981-13-0923-6_50en_US
dc.identifier.isbn9789811309229-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85051957999)-
dc.identifier.urihttps://doi.org/10.1007/978-981-13-0923-6_50-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6513-
dc.description.abstractThe classification of focal and non-focal electroencephalogram (EEG) signals for diagnosis of epilepsy at an early stage is one of the most difficult problems. There have been many attempts to develop automated detection algorithms to assist clinical research for presurgical analysis of epilepsy. In this paper, a novel approach for studying EEG signals has been proposed using flexible analytic wavelet transform (FAWT) which is a nonstationary signal processing technique. In this study, EEG signals are decomposed into the desired number of sub-bands (SBs). Fractal dimension (FD) is used as a feature and then computed it for all SB signals which are obtained from FAWT. The significant features obtained from the Kruskal–Wallis statistical test and are classified using robust energy-based least square twin support vector machine (RELS-TSVM). In order to show the effectiveness of the proposed method for classification of focal (F) and non-focal (NF) EEG signals, publicly available database termed as Bern-Barcelona EEG dataset is used for the study. © Springer Nature Singapore Pte Ltd 2019.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectArtificial intelligenceen_US
dc.subjectClassification (of information)en_US
dc.subjectClinical researchen_US
dc.subjectComputer aided diagnosisen_US
dc.subjectElectroencephalographyen_US
dc.subjectFractal dimensionen_US
dc.subjectNeurologyen_US
dc.subjectWavelet transformsen_US
dc.subjectAnalytic wavelet transformen_US
dc.subjectAutomated detectionen_US
dc.subjectAutomated identification systemsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectLeast Squareen_US
dc.subjectNonstationary signal processingen_US
dc.subjectRobust energyen_US
dc.subjectTwin support vector machinesen_US
dc.subjectBiomedical signal processingen_US
dc.titleAutomated identification system for focal EEG signals using fractal dimension of FAWT-based sub-bands signalsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: