Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6515
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGayen, Atinen_US
dc.contributor.authorKumar, Manoj Ashoken_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:42Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:42Z-
dc.date.issued2018-
dc.identifier.citationGayen, A., & Kumar, M. A. (2018). Generalized estimating equation for the student-t distributions. Paper presented at the IEEE International Symposium on Information Theory - Proceedings, , 2018-June 571-575. doi:10.1109/ISIT.2018.8437622en_US
dc.identifier.isbn9781538647806-
dc.identifier.issn2157-8095-
dc.identifier.otherEID(2-s2.0-85052483766)-
dc.identifier.urihttps://doi.org/10.1109/ISIT.2018.8437622-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6515-
dc.description.abstractIn [12], it was shown that a generalized maximum likelihood estimation problem on a (canonical) \alpha -power-law model (\mathbb{M}^{(\alpha)} -family) can be solved by solving a system of linear equations. This was due to an orthogonality relationship between the \mathbb{M}^{(\alpha)} -family and a linear family with respect to the relative \alpha -entropy (or the \mathscr{I}-{\alpha} -divergence). Relative \alpha -entropy is a generalization of the usual relative entropy (or the Kullback-Leibler divergence). \mathbb{M}^{(\alpha)} -family is a generalization of the usual exponential family. In this paper, we first generalize the \mathbb{M}^{(\alpha)}- family including the multivariate, continuous case and show that the Student-t distributions fall in this family. We then extend the above stated result of [12] to the general \mathbb{M}^{(\alpha)} -family. Finally we apply this result to the Student-t distribution and find generalized estimators for its parameters. © 2018 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE International Symposium on Information Theory - Proceedingsen_US
dc.subjectEntropyen_US
dc.subjectInformation theoryen_US
dc.subjectStudentsen_US
dc.subjectExponential familyen_US
dc.subjectGeneralized estimating equationsen_US
dc.subjectGeneralized maximum likelihood estimationsen_US
dc.subjectKullback Leibler divergenceen_US
dc.subjectOrthogonality relationshipen_US
dc.subjectRelative entropyen_US
dc.subjectStudent-t distributionen_US
dc.subjectSystem of linear equationsen_US
dc.subjectMaximum likelihood estimationen_US
dc.titleGeneralized Estimating Equation for the Student-t Distributionsen_US
dc.typeConference Paperen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: