Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6531
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sahoo, Swadesh Kumar | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:49:44Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:49:44Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Arora, V., & Sahoo, S. K. (2021). Area estimates of images of disks under analytic functions. Acta Mathematica Sinica, English Series, 37(10), 1533-1548. doi:10.1007/s10114-021-0437-z | en_US |
dc.identifier.issn | 1439-8516 | - |
dc.identifier.other | EID(2-s2.0-85117309557) | - |
dc.identifier.uri | https://doi.org/10.1007/s10114-021-0437-z | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6531 | - |
dc.description.abstract | Let Dr := {z = x + iy ϵ C : |z| < r}, r ≤ 1. For a normalized analytic function f in the unit disk D := D1, estimating the Dirichlet integral (Formula presented.)., is an important classical problem in complex analysis. Geometrically, Δ(r, f) represents the area of the image of Dr under f counting multiplicities. In this paper, our main objective is to estimate areas of images of Dr under non-vanishing analytic functions of the form (z/f)μ, μ > 0, in principal powers, when f ranges over certain classes of analytic and univalent functions in Dr. © 2021, Springer-Verlag GmbH Germany & The Editorial Office of AMS. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.source | Acta Mathematica Sinica, English Series | en_US |
dc.title | Area Estimates of Images of Disks under Analytic Functions | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: