Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6532
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahmad, Sk. Safique | en_US |
dc.contributor.author | Kanhya, Prince | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:49:44Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:49:44Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Ahmad, S. S., & Kanhya, P. (2021). Backward error analysis and inverse eigenvalue problems for hankel and symmetric-toeplitz structures. Applied Mathematics and Computation, 406 doi:10.1016/j.amc.2021.126288 | en_US |
dc.identifier.issn | 0096-3003 | - |
dc.identifier.other | EID(2-s2.0-85105307214) | - |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2021.126288 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6532 | - |
dc.description.abstract | This work deals with the study of structured backward error analysis of Hankel and symmetric-Toeplitz matrix pencils. These structured matrix pencils belong to the class of symmetric matrix pencils with some additional properties that a symmetric matrix pencil does not have in general. The perturbation analysis of these two structures is discussed one by one to depict the additional properties explicitly. Present work shows the entrywise structured perturbation of matrix pencils in Frobenius norm such that the specified eigenpairs become exact eigenpairs of an appropriately perturbed matrix pencil. The framework used here maintains the sparsity in the perturbation of the above-structured matrix pencils. Further, the backward error results help for solving a variety of inverse eigenvalue problems. © 2021 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Inc. | en_US |
dc.source | Applied Mathematics and Computation | en_US |
dc.subject | Differential equations | en_US |
dc.subject | Error analysis | en_US |
dc.subject | Inverse problems | en_US |
dc.subject | Matrix algebra | en_US |
dc.subject | Backward error | en_US |
dc.subject | Backward error analysis | en_US |
dc.subject | Generalized inverse eigenvalue problems | en_US |
dc.subject | Hankel generalized eigenvalue problem | en_US |
dc.subject | Inverse eigenvalues problems | en_US |
dc.subject | Matrix pencil | en_US |
dc.subject | Structured-Matrices | en_US |
dc.subject | Symmetric matrices | en_US |
dc.subject | Symmetric-toeplitz generalized eigenvalue problem | en_US |
dc.subject | Symmetrics | en_US |
dc.subject | Eigenvalues and eigenfunctions | en_US |
dc.title | Backward error analysis and inverse eigenvalue problems for Hankel and Symmetric-Toeplitz structures | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: