Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6533
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.contributor.authorGupta, Tarunen_US
dc.contributor.authorShah, Mitenen_US
dc.contributor.authorRichhariya, Bharaten_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:44Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:44Z-
dc.date.issued2021-
dc.identifier.citationTanveer, M., Gupta, T., Shah, M., & Richhariya, B. (2021). Sparse twin support vector clustering using pinball loss. IEEE Journal of Biomedical and Health Informatics, 25(10), 3776-3783. doi:10.1109/JBHI.2021.3059910en_US
dc.identifier.issn2168-2194-
dc.identifier.otherEID(2-s2.0-85100937940)-
dc.identifier.urihttps://doi.org/10.1109/JBHI.2021.3059910-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6533-
dc.description.abstractClustering is a widely used machine learning technique for unlabelled data. One of the recently proposed techniques is the twin support vector clustering (TWSVC) algorithm. The idea of TWSVC is to generate hyperplanes for each cluster. TWSVC utilizes the hinge loss function to penalize the misclassification. However, the hinge loss relies on shortest distance between different clusters, and is unstable for noise-corrupted datasets, and for re-sampling. In this paper, we propose a novel Sparse Pinball loss Twin Support Vector Clustering (SPTSVC). The proposed SPTSVC involves the ϵ-insensitive pinball loss function to formulate a sparse solution. Pinball loss function provides noise-insensitivity and re-sampling stability. The ϵ-insensitive zone provides sparsity to the model and improves testing time. Numerical experiments on synthetic as well as real world benchmark datasets are performed to show the efficacy of the proposed model. An analysis on the sparsity of various clustering algorithms is presented in this work. In order to show the feasibility and applicability of the proposed SPTSVC on biomedical data, experiments have been performed on epilepsy and breast cancer datasets. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Journal of Biomedical and Health Informaticsen_US
dc.subjectLearning systemsen_US
dc.subjectBenchmark datasetsen_US
dc.subjectBiomedical dataen_US
dc.subjectGeneralization performanceen_US
dc.subjectLoss functionsen_US
dc.subjectMachine learning techniquesen_US
dc.subjectNumerical experimentsen_US
dc.subjectSparse solutionsen_US
dc.subjectSupport vector clusteringen_US
dc.subjectClustering algorithmsen_US
dc.subjectaccuracyen_US
dc.subjectadenomatous polypen_US
dc.subjectArticleen_US
dc.subjectbrain dysfunctionen_US
dc.subjectbreast canceren_US
dc.subjectdata clusteringen_US
dc.subjectelectroencephalographyen_US
dc.subjectepilepsyen_US
dc.subjectfibroadenomaen_US
dc.subjecthistopathologyen_US
dc.subjectindependent component analysisen_US
dc.subjectmachine learningen_US
dc.subjectmultimodal imagingen_US
dc.subjectnonhumanen_US
dc.subjectnuclear magnetic resonance imagingen_US
dc.subjectpapillary carcinomaen_US
dc.subjectphyllodes tumoren_US
dc.subjectprincipal component analysisen_US
dc.subjecttrainingen_US
dc.subjecttwin support vector machineen_US
dc.subjectX rayen_US
dc.subjectalgorithmen_US
dc.subjectbreast tumoren_US
dc.subjectcluster analysisen_US
dc.subjectepilepsyen_US
dc.subjectfemaleen_US
dc.subjecthumanen_US
dc.subjectsupport vector machineen_US
dc.subjectAlgorithmsen_US
dc.subjectBreast Neoplasmsen_US
dc.subjectCluster Analysisen_US
dc.subjectEpilepsyen_US
dc.subjectFemaleen_US
dc.subjectHumansen_US
dc.subjectSupport Vector Machineen_US
dc.titleSparse Twin Support Vector Clustering Using Pinball Lossen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: