Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSohani, Vijay Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:45Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:45Z-
dc.date.issued2021-
dc.identifier.citationSohani, V. K., & Tiwari, D. (2021). Dispersion estimates for the discrete hermite operator. Indian Journal of Pure and Applied Mathematics, 52(3), 773-786. doi:10.1007/s13226-021-00137-1en_US
dc.identifier.issn0019-5588-
dc.identifier.otherEID(2-s2.0-85121620997)-
dc.identifier.urihttps://doi.org/10.1007/s13226-021-00137-1-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6534-
dc.description.abstractIn this article, we obatin the l∞ estimate of the kernel an,m(t) for m= 0 , 1 , m= n and t∈ [1 , ∞] for the propagator e-itHd of one dimensional difference operator associated with the Hermite functions. We conjecture that this estimate holds true for any positive integer m and in that case, we obtain better decay for ‖e-itHd‖l1→l∞ and ‖e-itHd‖lσ2→l-σ2 for large |t| compare to the Euclidean case, see Egorova (J Spectr Theory 5:663–696, 2015). These estimates are useful in the analysis of one-dimensional discrete Schrödinger equation associated with operator Hd. © 2021, The Indian National Science Academy.en_US
dc.language.isoenen_US
dc.publisherIndian National Science Academyen_US
dc.sourceIndian Journal of Pure and Applied Mathematicsen_US
dc.titleDispersion estimates for the discrete Hermite operatoren_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: