Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6534
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sohani, Vijay Kumar | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:49:45Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:49:45Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Sohani, V. K., & Tiwari, D. (2021). Dispersion estimates for the discrete hermite operator. Indian Journal of Pure and Applied Mathematics, 52(3), 773-786. doi:10.1007/s13226-021-00137-1 | en_US |
dc.identifier.issn | 0019-5588 | - |
dc.identifier.other | EID(2-s2.0-85121620997) | - |
dc.identifier.uri | https://doi.org/10.1007/s13226-021-00137-1 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6534 | - |
dc.description.abstract | In this article, we obatin the l∞ estimate of the kernel an,m(t) for m= 0 , 1 , m= n and t∈ [1 , ∞] for the propagator e-itHd of one dimensional difference operator associated with the Hermite functions. We conjecture that this estimate holds true for any positive integer m and in that case, we obtain better decay for ‖e-itHd‖l1→l∞ and ‖e-itHd‖lσ2→l-σ2 for large |t| compare to the Euclidean case, see Egorova (J Spectr Theory 5:663–696, 2015). These estimates are useful in the analysis of one-dimensional discrete Schrödinger equation associated with operator Hd. © 2021, The Indian National Science Academy. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Indian National Science Academy | en_US |
dc.source | Indian Journal of Pure and Applied Mathematics | en_US |
dc.title | Dispersion estimates for the discrete Hermite operator | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: