Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6535
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArshad, Mohd.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:45Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:45Z-
dc.date.issued2021-
dc.identifier.citationMangla, S., Pathak, A. K., Arshad, M., & Haque, U. (2021). Short-term forecasting of the COVID-19 outbreak in india. International Health, 13(5), 410-420. doi:10.1093/inthealth/ihab031en_US
dc.identifier.issn1876-3413-
dc.identifier.otherEID(2-s2.0-85115969516)-
dc.identifier.urihttps://doi.org/10.1093/inthealth/ihab031-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6535-
dc.description.abstractAs the outbreak of coronavirus disease 2019 (COVID-19) is rapidly spreading in different parts of India, a reliable forecast for the cumulative confirmed cases and the number of deaths can be helpful for policymakers in making the decisions for utilizing available resources in the country. Recently, various mathematical models have been used to predict the outbreak of COVID-19 worldwide and also in India. In this article we use exponential, logistic, Gompertz growth and autoregressive integrated moving average (ARIMA) models to predict the spread of COVID-19 in India after the announcement of various unlock phases. The mean absolute percentage error and root mean square error comparative measures were used to check the goodness-of-fit of the growth models and Akaike information criterion for ARIMA model selection. Using COVID-19 pandemic data up to 20 December 2020 from India and its five most affected states (Maharashtra, Karnataka, Andhra Pradesh, Tamil Nadu and Kerala), we report 15-days-ahead forecasts for cumulative confirmed cases and the number of deaths. Based on available data, we found that the ARIMA model is the best-fitting model for COVID-19 cases in India and its most affected states. © 2021 The Author(s) 2021.en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.sourceInternational Healthen_US
dc.subjectanalytical erroren_US
dc.subjectArticleen_US
dc.subjectautoregressive integratedmoving averageen_US
dc.subjectchi square testen_US
dc.subjectcontrolled studyen_US
dc.subjectcoronavirus disease 2019en_US
dc.subjectcumulative incidenceen_US
dc.subjectdisease transmissionen_US
dc.subjectexponential growth modelen_US
dc.subjectforecastingen_US
dc.subjectGompertz modelen_US
dc.subjecthumanen_US
dc.subjectIndiaen_US
dc.subjectmean absolute percentage erroren_US
dc.subjectmortality rateen_US
dc.subjectnonhumanen_US
dc.subjectpandemicen_US
dc.subjectroot mean square erroren_US
dc.subjectstatistical modelen_US
dc.subjectepidemicen_US
dc.subjectepidemiologyen_US
dc.subjectCOVID-19en_US
dc.subjectDisease Outbreaksen_US
dc.subjectHumansen_US
dc.subjectIndiaen_US
dc.subjectModels, Statisticalen_US
dc.subjectPandemicsen_US
dc.subjectSARS-CoV-2en_US
dc.titleShort-term forecasting of the COVID-19 outbreak in Indiaen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Hybrid Gold, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: