Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6536
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParkash, Ananden_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:45Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:45Z-
dc.date.issued2021-
dc.identifier.citationParkash, A., & Kour, S. (2021). On Cohen’s theorem for modules. Indian Journal of Pure and Applied Mathematics, 52(3), 869-871. doi:10.1007/s13226-021-00101-zen_US
dc.identifier.issn0019-5588-
dc.identifier.otherEID(2-s2.0-85109039405)-
dc.identifier.urihttps://doi.org/10.1007/s13226-021-00101-z-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6536-
dc.description.abstractIn this paper, we prove that if R is a commutative ring with unity and M is a finitely generated R-module, then M is Noetherian if and only if for every prime ideal P of R with Ann(M) ⊆ P, there exists a finitely generated submodule NP of M such that PM⊆ NP⊆ M(P). © 2021, The Indian National Science Academy.en_US
dc.language.isoenen_US
dc.publisherIndian National Science Academyen_US
dc.sourceIndian Journal of Pure and Applied Mathematicsen_US
dc.titleOn Cohen’s theorem for modulesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: