Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6536
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Parkash, Anand | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:49:45Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:49:45Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Parkash, A., & Kour, S. (2021). On Cohen’s theorem for modules. Indian Journal of Pure and Applied Mathematics, 52(3), 869-871. doi:10.1007/s13226-021-00101-z | en_US |
dc.identifier.issn | 0019-5588 | - |
dc.identifier.other | EID(2-s2.0-85109039405) | - |
dc.identifier.uri | https://doi.org/10.1007/s13226-021-00101-z | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6536 | - |
dc.description.abstract | In this paper, we prove that if R is a commutative ring with unity and M is a finitely generated R-module, then M is Noetherian if and only if for every prime ideal P of R with Ann(M) ⊆ P, there exists a finitely generated submodule NP of M such that PM⊆ NP⊆ M(P). © 2021, The Indian National Science Academy. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Indian National Science Academy | en_US |
dc.source | Indian Journal of Pure and Applied Mathematics | en_US |
dc.title | On Cohen’s theorem for modules | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: