Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6541
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSahoo, Swadesh Kumaren_US
dc.contributor.authorSingh, Sanjeeven_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:46Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:46Z-
dc.date.issued2021-
dc.identifier.citationArora, V., Sahoo, S. K., & Singh, S. (2021). Approximation of certain non-vanishing analytic functions in a parabolic region. Results in Mathematics, 76(3) doi:10.1007/s00025-021-01434-1en_US
dc.identifier.issn1422-6383-
dc.identifier.otherEID(2-s2.0-85110472351)-
dc.identifier.urihttps://doi.org/10.1007/s00025-021-01434-1-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6541-
dc.description.abstractIn this work, we consider a class of analytic functions f defined in the unit disk for which the values of zf′/ f lie in a parabolic region of the right-half plane. By using a well-known sufficient condition for functions to be in this class in terms of the Taylor coefficients of z/f, we introduce a subclass Fα of this class. The aim of the paper is to find the best approximation of non-vanishing analytic functions of the form z/f by functions z/g with g∈ Fα. The proof relies on solving a semi-infinite quadratic problem, a problem of independent interest. © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherBirkhauseren_US
dc.sourceResults in Mathematicsen_US
dc.titleApproximation of Certain Non-vanishing Analytic Functions in a Parabolic Regionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: