Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6552
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:47Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:47Z-
dc.date.issued2021-
dc.identifier.citationMoosaei, H., Ketabchi, S., Razzaghi, M., & Tanveer, M. (2021). Generalized twin support vector machines. Neural Processing Letters, 53(2), 1545-1564. doi:10.1007/s11063-021-10464-3en_US
dc.identifier.issn1370-4621-
dc.identifier.otherEID(2-s2.0-85102299758)-
dc.identifier.urihttps://doi.org/10.1007/s11063-021-10464-3-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6552-
dc.description.abstractIn this paper, we propose two efficient approaches of twin support vector machines (TWSVM). The first approach is to reformulate the TWSVM formulation by introducing L1 and L∞ norms in the objective functions, and convert into linear programming problems termed as LTWSVM for binary classification. The second approach is to solve the primal TWSVM, and convert into completely unconstrained minimization problem. Since the objective function is convex, piecewise quadratic but not twice differentiable, we present an efficient algorithm using the generalized Newton’s method termed as GTWSVM. Computational comparisons of the proposed LTWSVM and GTWSVM on synthetic and several real-world benchmark datasets exhibits significantly better performance with remarkably less computational time in comparison to relevant baseline methods. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceNeural Processing Lettersen_US
dc.subjectBenchmarkingen_US
dc.subjectLinear programmingen_US
dc.subjectBenchmark datasetsen_US
dc.subjectBinary classificationen_US
dc.subjectComputational comparisonsen_US
dc.subjectComputational timeen_US
dc.subjectLinear programming problemen_US
dc.subjectObjective functionsen_US
dc.subjectTwin support vector machinesen_US
dc.subjectUnconstrained minimization problemen_US
dc.subjectSupport vector machinesen_US
dc.titleGeneralized Twin Support Vector Machinesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: