Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6574
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBisht, Nitinen_US
dc.contributor.authorSingh, Sanjeeven_US
dc.contributor.authorVijesh, Antonyen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:51Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:51Z-
dc.date.issued2021-
dc.identifier.citationBaricz, Á., Bisht, N., Singh, S., & Vijesh, V. A. (2021). Bounds for the generalized marcum function of the second kind. Ramanujan Journal, doi:10.1007/s11139-021-00440-9en_US
dc.identifier.issn1382-4090-
dc.identifier.otherEID(2-s2.0-85107475708)-
dc.identifier.urihttps://doi.org/10.1007/s11139-021-00440-9-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6574-
dc.description.abstractIn this paper, we focus on the generalized Marcum function of the second kind of order ν> 0 , defined by Rν(a,b)=ca,νaν-1∫b∞tνe-t2+a22Kν-1(at)dt,where a> 0 , b≥ 0 , Kν stands for the modified Bessel function of the second kind, and ca,ν is a constant depending on a and ν such that Rν(a, 0) = 1. Our aim is to find some new tight bounds for the generalized Marcum function of the second kind and compare them with the existing bounds. In order to deduce these bounds, we include the monotonicity properties of various functions containing modified Bessel functions of the second kind as our main tools. Moreover, we demonstrate that our bounds in some sense are the best possible ones. © 2021, The Author(s).en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceRamanujan Journalen_US
dc.titleBounds for the generalized Marcum function of the second kinden_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Hybrid Gold-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: