Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6580
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaul, Swarajen_US
dc.contributor.authorShukla, Niraj Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:52Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:52Z-
dc.date.issued2021-
dc.identifier.citationHan, B., Paul, S., & Shukla, N. K. (2021). Microlocal analysis and characterization of sobolev wavefront sets using shearlets. Constructive Approximation, doi:10.1007/s00365-021-09529-2en_US
dc.identifier.issn0176-4276-
dc.identifier.otherEID(2-s2.0-85102462530)-
dc.identifier.urihttps://doi.org/10.1007/s00365-021-09529-2-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6580-
dc.description.abstractSobolev wavefront sets and 2-microlocal spaces play a key role in describing and analyzing the singularities of distributions in microlocal analysis and solutions of partial differential equations. Employing the continuous shearlet transform to Sobolev spaces, in this paper we characterize the microlocal Sobolev wavefront sets, the 2-microlocal spaces, and local Hölder spaces of distributions/functions. We then establish the connections among Sobolev wavefront sets, 2-microlocal spaces, and local Hölder spaces through the continuous shearlet transform. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceConstructive Approximationen_US
dc.titleMicrolocal Analysis and Characterization of Sobolev Wavefront Sets Using Shearletsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: