Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6599
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaji, Bibekanandaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:55Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:55Z-
dc.date.issued2020-
dc.identifier.citationDas, P., Dey, P. K., Maji, B., & Rout, S. S. (2020). Perfect powers in an alternating sum of consecutive cubes. Glasnik Matematicki, 55(1), 37-53. doi:10.3336/gm.55.1.04en_US
dc.identifier.issn0017-095X-
dc.identifier.otherEID(2-s2.0-85090747144)-
dc.identifier.urihttps://doi.org/10.3336/gm.55.1.04-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6599-
dc.description.abstractIn this paper, we consider the problem about finding out perfect powers in an alternating sum of consecutive cubes. More precisely, we completely solve the Diophantine equation (x +1)3 −(x+2)3 +···− (x + 2d)3 + (x + 2d + 1)3 = zp, where p is prime and x,d,z are integers with 1 ≤ d ≤ 50. © 2020, University of Zagreb. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherUniversity of Zagreben_US
dc.sourceGlasnik Matematickien_US
dc.titlePerfect powers in an alternating sum of consecutive cubesen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: