Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6599
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Maji, Bibekananda | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:49:55Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:49:55Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Das, P., Dey, P. K., Maji, B., & Rout, S. S. (2020). Perfect powers in an alternating sum of consecutive cubes. Glasnik Matematicki, 55(1), 37-53. doi:10.3336/gm.55.1.04 | en_US |
dc.identifier.issn | 0017-095X | - |
dc.identifier.other | EID(2-s2.0-85090747144) | - |
dc.identifier.uri | https://doi.org/10.3336/gm.55.1.04 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6599 | - |
dc.description.abstract | In this paper, we consider the problem about finding out perfect powers in an alternating sum of consecutive cubes. More precisely, we completely solve the Diophantine equation (x +1)3 −(x+2)3 +···− (x + 2d)3 + (x + 2d + 1)3 = zp, where p is prime and x,d,z are integers with 1 ≤ d ≤ 50. © 2020, University of Zagreb. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Zagreb | en_US |
dc.source | Glasnik Matematicki | en_US |
dc.title | Perfect powers in an alternating sum of consecutive cubes | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access, Green | - |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: