Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6610
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:57Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:57Z-
dc.date.issued2020-
dc.identifier.citationAlam, S., Sonbhadra, S. K., Agarwal, S., Nagabhushan, P., & Tanveer, M. (2020). Sample reduction using farthest boundary point estimation (FBPE) for support vector data description (SVDD). Pattern Recognition Letters, 131, 268-276. doi:10.1016/j.patrec.2020.01.004en_US
dc.identifier.issn0167-8655-
dc.identifier.otherEID(2-s2.0-85078567630)-
dc.identifier.urihttps://doi.org/10.1016/j.patrec.2020.01.004-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6610-
dc.description.abstractThe objective of this paper is to design an algorithm to maximize the learning ability and knowledge about the target class while minimizing the number of training samples for support vector data description (SVDD). With this motivation, a novel training sample reduction algorithm is proposed in this paper that selects the most promising boundary data points as training set. The proposed approach uses the local geometry of the distribution to estimate the farthest boundary points (also known as extreme points). The legitimacy of the proposed algorithm is verified via experiments performed on MNIST, Iris, UCI default credit card, svmguide and Indian Pines datasets. © 2020 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourcePattern Recognition Lettersen_US
dc.subjectSamplingen_US
dc.subjectBoundary pointsen_US
dc.subjectData distributionen_US
dc.subjectExtreme pointsen_US
dc.subjectLearning abilitiesen_US
dc.subjectMinimizing the number ofen_US
dc.subjectSample reductionen_US
dc.subjectSupport vector data descriptionen_US
dc.subjectTraining sampleen_US
dc.subjectData descriptionen_US
dc.titleSample reduction using farthest boundary point estimation (FBPE) for support vector data description (SVDD)en_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: