Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Sanjeeven_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:57Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:57Z-
dc.date.issued2020-
dc.identifier.citationAktaş, İ., Baricz, Á., & Singh, S. (2020). Geometric and monotonic properties of hyper-bessel functions. Ramanujan Journal, 51(2), 275-295. doi:10.1007/s11139-018-0105-9en_US
dc.identifier.issn1382-4090-
dc.identifier.otherEID(2-s2.0-85062727352)-
dc.identifier.urihttps://doi.org/10.1007/s11139-018-0105-9-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6613-
dc.description.abstractSome geometric properties of a normalized hyper-Bessel functions are investigated. Especially we focus on the radii of starlikeness, convexity, and uniform convexity of hyper-Bessel functions and we show that the obtained radii satisfy some transcendental equations. In addition, we give some bounds for the first positive zero of normalized hyper-Bessel functions, Redheffer-type inequalities, and bounds for this function. In this study we take advantage of Euler–Rayleigh inequalities and Laguerre–Pólya class of real entire functions, intensively. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceRamanujan Journalen_US
dc.titleGeometric and monotonic properties of hyper-Bessel functionsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: