Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6613
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Singh, Sanjeev | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:49:57Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:49:57Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Aktaş, İ., Baricz, Á., & Singh, S. (2020). Geometric and monotonic properties of hyper-bessel functions. Ramanujan Journal, 51(2), 275-295. doi:10.1007/s11139-018-0105-9 | en_US |
dc.identifier.issn | 1382-4090 | - |
dc.identifier.other | EID(2-s2.0-85062727352) | - |
dc.identifier.uri | https://doi.org/10.1007/s11139-018-0105-9 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6613 | - |
dc.description.abstract | Some geometric properties of a normalized hyper-Bessel functions are investigated. Especially we focus on the radii of starlikeness, convexity, and uniform convexity of hyper-Bessel functions and we show that the obtained radii satisfy some transcendental equations. In addition, we give some bounds for the first positive zero of normalized hyper-Bessel functions, Redheffer-type inequalities, and bounds for this function. In this study we take advantage of Euler–Rayleigh inequalities and Laguerre–Pólya class of real entire functions, intensively. © 2019, Springer Science+Business Media, LLC, part of Springer Nature. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.source | Ramanujan Journal | en_US |
dc.title | Geometric and monotonic properties of hyper-Bessel functions | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access, Green | - |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: