Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6618
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaji, Bibekanandaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:58Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:58Z-
dc.date.issued2020-
dc.identifier.citationLi, H. -., Maji, B., Kuzumaki, T., & Agarwal, P. (2020). A generalization of the secant zeta function as a lambert series. Mathematical Problems in Engineering, 2020 doi:10.1155/2020/7923671en_US
dc.identifier.issn1024-123X-
dc.identifier.otherEID(2-s2.0-85085198957)-
dc.identifier.urihttps://doi.org/10.1155/2020/7923671-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6618-
dc.description.abstractRecently, Lalín, Rodrigue, and Rogers have studied the secant zeta function and its convergence. They found many interesting values of the secant zeta function at some particular quadratic irrational numbers. They also gave modular transformation properties of the secant zeta function. In this paper, we generalized secant zeta function as a Lambert series and proved a result for the Lambert series, from which the main result of Lalín et al. follows as a corollary, using the theory of generalized Dedekind eta-function, developed by Lewittes, Berndt, and Arakawa. © 2020 H.-Y. Li et al.en_US
dc.language.isoenen_US
dc.publisherHindawi Limiteden_US
dc.sourceMathematical Problems in Engineeringen_US
dc.subjectEngineeringen_US
dc.subjectMathematical techniquesen_US
dc.subjectEta functionsen_US
dc.subjectIrrational numbersen_US
dc.subjectModular transformationsen_US
dc.subjectZeta functionen_US
dc.subjectFunctionsen_US
dc.titleA Generalization of the Secant Zeta Function as a Lambert Seriesen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Gold-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: