Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6625
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBisht, Nitinen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:59Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:59Z-
dc.date.issued2019-
dc.identifier.citationBisht, N. (2019). Stable range one on non-zero divisors. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 129(5) doi:10.1007/s12044-019-0526-4en_US
dc.identifier.issn0253-4142-
dc.identifier.otherEID(2-s2.0-85069723315)-
dc.identifier.urihttps://doi.org/10.1007/s12044-019-0526-4-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6625-
dc.description.abstractIn this paper, almost unit 1-stable range condition for a commutative ring with unity is defined and similar results which are already proved for the weakly unit 1-stable range are proved. Several properties of rings satisfying almost unit 1-stable range are discussed. The characterizations for rings such as presimplifiable semilocal rings and idealization R(M) of a ring R and an R-module M, satisfying almost unit 1-stable range is also given in this paper. Few examples are given to show that almost unit 1-stable range condition is different from other stable range conditions. © 2019, Indian Academy of Sciences.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceProceedings of the Indian Academy of Sciences: Mathematical Sciencesen_US
dc.subjectA-RINGSen_US
dc.subjectalmost unit 1-stable rangeen_US
dc.subjectCommutative ringen_US
dc.subjectSemilocal ringen_US
dc.subjectStable range oneen_US
dc.subjectunit 1-stable rangeen_US
dc.subjectweakly unit 1-stable rangeen_US
dc.subjectZero divisorsen_US
dc.subjectMathematical techniquesen_US
dc.titleStable range one on non-zero divisorsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: