Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6628
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.contributor.authorGautam, Chandanen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:00Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:00Z-
dc.date.issued2019-
dc.identifier.citationTanveer, M., Gautam, C., & Suganthan, P. N. (2019). Comprehensive evaluation of twin SVM based classifiers on UCI datasets. Applied Soft Computing Journal, 83 doi:10.1016/j.asoc.2019.105617en_US
dc.identifier.issn1568-4946-
dc.identifier.otherEID(2-s2.0-85070077367)-
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2019.105617-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6628-
dc.description.abstractIn the past decade, twin support vector machine (TWSVM) based classifiers have received considerable attention from the research community. In this paper, we analyze the performance of 8 variants of TWSVM based classifiers along with 179 classifiers evaluated in Fernandez-Delgado et al. (2014) from 17 different families on 90 University of California Irvine (UCI) benchmark datasets from various domains. Results of these classifiers are exhaustively analyzed using various performance criteria. Statistical testing is performed using Friedman Rank (FRank). Our experiments show that two least square TWSVM based classifiers (ILSTSVM_m, and RELS-TSVM_m) are the top two ranked methods among 187 classifiers and they significantly outperform all other classifiers according to Friedman Rank. Overall, this paper bridges the evaluational benchmarking gap between various TWSVM variants and the classifiers from other families. Codes of this paper are provided on authors’ homepages to reproduce the presented results and figures in this paper. © 2019 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceApplied Soft Computing Journalen_US
dc.subjectBenchmarkingen_US
dc.subjectLearning systemsen_US
dc.subjectLeast squares approximationsen_US
dc.subjectSupport vector machinesen_US
dc.subjectVectorsen_US
dc.subjectBenchmark datasetsen_US
dc.subjectComprehensive evaluationen_US
dc.subjectLeast squares twin support vector machinesen_US
dc.subjectPerformance criterionen_US
dc.subjectResearch communitiesen_US
dc.subjectStatistical testingen_US
dc.subjectTwin support vector machinesen_US
dc.subjectUniversity of Californiaen_US
dc.subjectClassification (of information)en_US
dc.titleComprehensive evaluation of twin SVM based classifiers on UCI datasetsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: