Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6632
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgrawal, Saritaen_US
dc.contributor.authorSahoo, Swadesh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:00Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:00Z-
dc.date.issued2019-
dc.identifier.citationAgrawal, S., Arora, V., Mohapatra, M. R., & Sahoo, S. K. (2019). Area problem for univalent functions in the unit disk with quasiconformal extension to the plane. Bulletin of the Iranian Mathematical Society, 45(4), 1061-1069. doi:10.1007/s41980-018-0184-9en_US
dc.identifier.issn1018-6301-
dc.identifier.otherEID(2-s2.0-85071002296)-
dc.identifier.urihttps://doi.org/10.1007/s41980-018-0184-9-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6632-
dc.description.abstractLet Δ (r, f) denote the area of the image of the subdisk |z|<r,0<r≤1, under an analytic function f in the unit disk | z| < 1. Without loss of generality, in this context, we consider only the analytic functions f in the unit disk with the normalization f(0) = 0 = f′(0) - 1. We set Ff(z) = z/ f(z). Our objective in this paper is to obtain a sharp upper bound of Δ (r, Ff) , when f varies over the class of normalized analytic univalent functions in the unit disk with quasiconformal extension to the entire complex plane. © 2018, Iranian Mathematical Society.en_US
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.sourceBulletin of the Iranian Mathematical Societyen_US
dc.titleArea Problem for Univalent Functions in the Unit Disk with Quasiconformal Extension to the Planeen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: