Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6635
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarak, Nijjwalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:01Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:01Z-
dc.date.issued2019-
dc.identifier.citationKarak, N. (2019). Measure density and embeddings of hajłasz-besov and hajłasz-triebel-lizorkin spaces. Journal of Mathematical Analysis and Applications, 475(1), 966-984. doi:10.1016/j.jmaa.2018.11.086en_US
dc.identifier.issn0022-247X-
dc.identifier.otherEID(2-s2.0-85062601632)-
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2018.11.086-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6635-
dc.description.abstractIn this paper, we investigate the relation between Sobolev-type embeddings of Hajłasz-Besov spaces (and also Hajłasz-Triebel-Lizorkin spaces) defined on a metric measure space (X,d,μ) and lower bound for the measure μ. We prove that if the measure μ satisfies μ(B(x,r))≥cr Q for some Q>0 and for any ball B(x,r)⊂X, then the Sobolev-type embeddings hold on balls for both these spaces. On the other hand, if the Sobolev-type embeddings hold in a domain Ω⊂X, then we prove that the domain Ω satisfies the so-called measure density condition, i.e., μ(B(x,r)∩Ω)≥cr Q holds for any ball B(x,r)⊂X, where X=(X,d,μ) is an Ahlfors Q-regular and geodesic metric measure space. © 2019 Elsevier Inc.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc.en_US
dc.sourceJournal of Mathematical Analysis and Applicationsen_US
dc.titleMeasure density and embeddings of Hajłasz-Besov and Hajłasz-Triebel-Lizorkin spacesen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: