Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6641
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmad, Sk. Safiqueen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:02Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:02Z-
dc.date.issued2019-
dc.identifier.citationAlam, R., & Ahmad, S. K. S. (2019). Sensitivity analysis of nonlinear eigenproblems. SIAM Journal on Matrix Analysis and Applications, 40(2), 672-695. doi:10.1137/17M1153236en_US
dc.identifier.issn0895-4798-
dc.identifier.otherEID(2-s2.0-85070920168)-
dc.identifier.urihttps://doi.org/10.1137/17M1153236-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6641-
dc.description.abstractLet P : Ω ⊂ C → Cn×n be given by P(λ):= m j =0 Ajφj(λ), where φj : Ω → C for j = 0, 1, . . ., m are suitable functions. We present an eigenvector-free framework for the sensitivity analysis of eigenvalues of P. We analyze the Fréchet differentiability of a simple eigenvalue of P as a function of P and derive two equivalent representations of the Fréchet derivative and the gradient of the eigenvalue. Further, we derive three equivalent representations of the condition number cond(λ, P) of a simple eigenvalue λ of P. Specially, we present an eigenvector-free representation of cond(λ, P) which generalizes a result due to Smith [Numer. Math., 10 (1967), pp. 232–240] for a standard eigenvalue problem to the case of a nonlinear eigenvalue problem and provides an alternative viewpoint of the sensitivity of eigenvalues. In the second part, we consider a homogeneous matrix-valued function H : C2 → Cn×n of the form H(c, s):= m j =0 Ajψj(c, s), where ψj : C2 → C for j = 0, 1, . . ., m are homogeneous functions of degree . We present a simple and concise eigenvector-free framework for the sensitivity analysis of eigenvalues of H that avoids the apparatus of projective spaces. We analyze Fréchet differentiability of a simple eigenvalue of H as a function of H and derive two equivalent representations of the Fréchet derivative and the gradient of the eigenvalue. Furthermore, we derive three equivalent representations of the condition number cond((λ, μ), H) of a simple eigenvalue (λ, μ) of H. Our eigenvector-free representation of cond((λ, μ), H) generalizes Smith’s eigenvector-free representation of the condition number of a simple eigenvalue of a matrix to the case of a homogeneous nonlinear eigenproblem. © 2019 Society for Industrial and Applied Mathematicsen_US
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematics Publicationsen_US
dc.sourceSIAM Journal on Matrix Analysis and Applicationsen_US
dc.subjectMatrix algebraen_US
dc.subjectNonlinear analysisen_US
dc.subjectNumber theoryen_US
dc.subjectSensitivity analysisen_US
dc.subjectCondition numbersen_US
dc.subjectEigen-valueen_US
dc.subjectMatrix polynomialsen_US
dc.subjectMatrix-valued functionsen_US
dc.subjectSingular valuesen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.titleSensitivity analysis of nonlinear eigenproblemsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: