Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6647
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAli, Istkharen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:03Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:03Z-
dc.date.issued2018-
dc.identifier.citationAli, I. (2018). A note on quaternion matrices and split quaternion matrix pencils. Journal of Applied Mathematics and Computing, 58(1-2), 323-334. doi:10.1007/s12190-017-1147-7en_US
dc.identifier.issn1598-5865-
dc.identifier.otherEID(2-s2.0-85032808923)-
dc.identifier.urihttps://doi.org/10.1007/s12190-017-1147-7-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6647-
dc.description.abstractIn this paper, localization theorems for left and right eigenvalues of a quaternion matrix are presented. Some differences between quaternion matrices and split quaternion matrices are summarized. A counter example for Gerschgorin theorems for left and right eigenvalues of a split quaternion matrix is given. Finally, a method for finding right eigenvalues of a split quaternion matrix pencil is presented. © 2017, Korean Society for Computational and Applied Mathematics.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceJournal of Applied Mathematics and Computingen_US
dc.subjectComputational methodsen_US
dc.subjectMathematical techniquesen_US
dc.subjectAND splitsen_US
dc.subjectCounter examplesen_US
dc.subjectGerschgorin theoremsen_US
dc.subjectQuaternion matrixen_US
dc.subjectRight eigenvaluesen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.titleA note on quaternion matrices and split quaternion matrix pencilsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: