Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6657
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sahoo, Swadesh Kumar | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:50:06Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:50:06Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Mohapatra, M. R., & Sahoo, S. K. (2018). Mapping properties of a scale invariant cassinian metric and a gromov hyperbolic metric. Bulletin of the Australian Mathematical Society, 97(1), 141-152. doi:10.1017/S0004972717000570 | en_US |
dc.identifier.issn | 0004-9727 | - |
dc.identifier.other | EID(2-s2.0-85040796754) | - |
dc.identifier.uri | https://doi.org/10.1017/S0004972717000570 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6657 | - |
dc.description.abstract | We consider a scale invariant Cassinian metric and a Gromov hyperbolic metric. We discuss a distortion property of the scale invariant Cassinian metric under Möbius maps of a punctured ball onto another punctured ball. We obtain a modulus of continuity of the identity map from a domain equipped with the scale invariant Cassinian metric (or the Gromov hyperbolic metric) onto the same domain equipped with the Euclidean metric. Finally, we establish the quasi-invariance properties of both metrics under quasiconformal maps. © 2017 Australian Mathematical Publishing Association Inc.. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.source | Bulletin of the Australian Mathematical Society | en_US |
dc.title | Mapping properties of a scale invariant cassinian metric and a gromov hyperbolic metric | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access, Green | - |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: