Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6660
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmad, Sk. Safiqueen_US
dc.contributor.authorAli, Istkharen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:06Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:06Z-
dc.date.issued2018-
dc.identifier.citationAhmad, S. S., & Ali, I. (2018). Localization theorems for matrices and bounds for the zeros of polynomials over quaternion division algebra. Filomat, 32(2), 553-573. doi:10.2298/FIL1802553Aen_US
dc.identifier.issn0354-5180-
dc.identifier.otherEID(2-s2.0-85047990409)-
dc.identifier.urihttps://doi.org/10.2298/FIL1802553A-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6660-
dc.description.abstractIn this paper, we derive Ostrowski and Brauer type theorems for the left and right eigenvalues of a quaternionic matrix. Generalizations of Gerschgorin type theorems are discussed for the left and the right eigenvalues of a quaternionic matrix. After that, a sufficient condition for the stability of a quaternionic matrix is given that generalizes the stability condition for a complex matrix. Finally, a characterization of bounds is derived for the zeros of quaternionic polynomials. © 2018, University of Nis. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherUniversity of Nisen_US
dc.sourceFilomaten_US
dc.titleLocalization theorems for matrices and bounds for the zeros of polynomials over quaternion division algebraen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Bronze, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: