Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6660
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahmad, Sk. Safique | en_US |
dc.contributor.author | Ali, Istkhar | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:50:06Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:50:06Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Ahmad, S. S., & Ali, I. (2018). Localization theorems for matrices and bounds for the zeros of polynomials over quaternion division algebra. Filomat, 32(2), 553-573. doi:10.2298/FIL1802553A | en_US |
dc.identifier.issn | 0354-5180 | - |
dc.identifier.other | EID(2-s2.0-85047990409) | - |
dc.identifier.uri | https://doi.org/10.2298/FIL1802553A | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6660 | - |
dc.description.abstract | In this paper, we derive Ostrowski and Brauer type theorems for the left and right eigenvalues of a quaternionic matrix. Generalizations of Gerschgorin type theorems are discussed for the left and the right eigenvalues of a quaternionic matrix. After that, a sufficient condition for the stability of a quaternionic matrix is given that generalizes the stability condition for a complex matrix. Finally, a characterization of bounds is derived for the zeros of quaternionic polynomials. © 2018, University of Nis. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Nis | en_US |
dc.source | Filomat | en_US |
dc.title | Localization theorems for matrices and bounds for the zeros of polynomials over quaternion division algebra | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access, Bronze, Green | - |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: