Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSahoo, Swadesh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:07Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:07Z-
dc.date.issued2017-
dc.identifier.citationChen, J., Li, P., Sahoo, S. K., & Wang, X. (2017). On the lipschitz continuity of certain quasiregular mappings between smooth jordan domains. Israel Journal of Mathematics, 220(1), 453-478. doi:10.1007/s11856-017-1522-yen_US
dc.identifier.issn0021-2172-
dc.identifier.otherEID(2-s2.0-85019044002)-
dc.identifier.urihttps://doi.org/10.1007/s11856-017-1522-y-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6668-
dc.description.abstractWe first investigate the Lipschitz continuity of (K,K’)-quasiregular C2 mappings between two Jordan domains with smooth boundaries, satisfying certain partial differential inequalities concerning Laplacian. Then two applications of the obtained result are given: As a direct consequence, we get the Lipschitz continuity of ρ-harmonic (K,K’)-quasiregular mappings, and as the other application, we study the Lipschitz continuity of (K,K’)- quasiconformal self-mappings of the unit disk, which are the solutions of the Poisson equation Δw = g. These results generalize and extend several recently obtained results by Kalaj, Mateljević and Pavlović. © 2017, Hebrew University of Jerusalem.en_US
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.sourceIsrael Journal of Mathematicsen_US
dc.titleOn the Lipschitz continuity of certain quasiregular mappings between smooth Jordan domainsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: