Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6676
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVijesh, Antonyen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:09Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:09Z-
dc.date.issued2017-
dc.identifier.citationKumar, K. H., & Vijesh, V. A. (2017). Chebyshev wavelet quasilinearization scheme for coupled nonlinear sine-gordon equations. Journal of Computational and Nonlinear Dynamics, 12(1) doi:10.1115/1.4035056en_US
dc.identifier.issn1555-1415-
dc.identifier.otherEID(2-s2.0-84999635285)-
dc.identifier.urihttps://doi.org/10.1115/1.4035056-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6676-
dc.description.abstractRadial basis function (RBF) has been found useful for solving coupled sine-Gordon equation with initial and boundary conditions. Though this approach produces moderate accuracy in a larger domain, it requires more grid points. In the present study, we develop an alternative numerical scheme for solving one-dimensional coupled sine- Gordon equation to improve accuracy and to reduce grid points. To achieve these objectives, we make use of a wavelet scheme and solve coupled sine-Gordon equation. Based on the numerical results from the wavelet-based scheme, we conclude that our proposed method is more efficient than the radial basic function method in terms of accuracy. © 2017 by ASME.en_US
dc.language.isoenen_US
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_US
dc.sourceJournal of Computational and Nonlinear Dynamicsen_US
dc.subjectNonlinear equationsen_US
dc.subjectNumerical methodsen_US
dc.subjectRadial basis function networksen_US
dc.subjectWavelet analysisen_US
dc.subjectChebysheven_US
dc.subjectCollocation methoden_US
dc.subjectInitial and boundary conditionsen_US
dc.subjectNumerical resultsen_US
dc.subjectNumerical schemeen_US
dc.subjectQuasi-linearizationen_US
dc.subjectRadial basic functionen_US
dc.subjectRadial Basis Function(RBF)en_US
dc.subjectsine-Gordon equationen_US
dc.titleChebyshev wavelet quasilinearization scheme for coupled nonlinear sine-gordon equationsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: