Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6678
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahmad, Sk. Safique | en_US |
dc.contributor.author | Ali, Istkhar | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:50:09Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:50:09Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Ahmad, S. S., & Ali, I. (2016). Bounds for eigenvalues of matrix polynomials over quaternion division algebra. Advances in Applied Clifford Algebras, 26(4), 1095-1125. doi:10.1007/s00006-016-0640-7 | en_US |
dc.identifier.issn | 0188-7009 | - |
dc.identifier.other | EID(2-s2.0-84957692417) | - |
dc.identifier.uri | https://doi.org/10.1007/s00006-016-0640-7 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6678 | - |
dc.description.abstract | Localization theorems are discussed for the left and right eigenvalues of block quaternionic matrices. Basic definitions of the left and right eigenvalues of quaternionic matrices are extended to quaternionic matrix polynomials. Furthermore, bounds on the absolute values of the left and right eigenvalues of quaternionic matrix polynomials are devised and illustrated for the matrix p norm, where p= 1 , 2 , ∞, F. The above generalizes the bounds on the absolute values of the eigenvalues of complex matrix polynomials, which give sharper bounds to the bounds developed in [LAA, 358, pp. 5–22 2003] for the case of 1, 2, and ∞ matrix norms. © 2016, Springer International Publishing. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Birkhauser Verlag AG | en_US |
dc.source | Advances in Applied Clifford Algebras | en_US |
dc.title | Bounds for Eigenvalues of Matrix Polynomials Over Quaternion Division Algebra | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: