Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6704
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShukla, Niraj Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:50:16Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:50:16Z-
dc.date.issued2012-
dc.identifier.citationDubey, R., & Shukla, N. K. (2012). Joint dilation scaling sets on the reducing subspaces. Advances in Pure and Applied Mathematics, 3(3), 329-349. doi:10.1515/apam-2012-0204en_US
dc.identifier.issn1867-1152-
dc.identifier.otherEID(2-s2.0-84870282806)-
dc.identifier.urihttps://doi.org/10.1515/apam-2012-0204-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6704-
dc.description.abstractIn this paper, we study joint dilation scaling sets, MSF multiwavelets and non-MSF multiwavelets for reducing subspaces of L 2(ℝ n). We characterize scaling sets having three-intervals by dilations 2 and - 2, and discuss joint dilation wavelet sets obtained from these joint dilation scaling sets and also from generalized Journé wavelet sets. Further, we provide a method to obtain joint dilation scaling sets in higher dimensions through scaling sets of lower dimensions and hence obtain multiwavelet sets by dilations A and B. © de Gruyter 2012.en_US
dc.language.isoenen_US
dc.sourceAdvances in Pure and Applied Mathematicsen_US
dc.titleJoint dilation scaling sets on the reducing subspacesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: