Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7450
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReddy Boddu, Venkata Ramien_US
dc.contributor.authorSinha, Lichchhavien_US
dc.contributor.authorYadav, Subhash Chanden_US
dc.contributor.authorShirage, Parasharam Marutien_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:11:42Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:11:42Z-
dc.date.issued2021-
dc.identifier.citationReddy Boddu, V. R., Palanisamy, M., Sinha, L., Yadav, S. C., Pol, V. G., & Shirage, P. M. (2021). Hysteresis abated P2-type NaCoO2cathode reveals highly reversible multiple phase transitions for high-rate sodium-ion batteries. Sustainable Energy and Fuels, 5(12), 3219-3228. doi:10.1039/d1se00490een_US
dc.identifier.issn2398-4902-
dc.identifier.otherEID(2-s2.0-85108154650)-
dc.identifier.urihttps://doi.org/10.1039/d1se00490e-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7450-
dc.description.abstractDespite the multiple phase transitions that occur during Na+ ion intercalation and deintercalation, an enhanced charge-discharge rate and a long cycle life are achieved with a hexagonal shaped P2-type NaCoO2 cathode for sodium-ion batteries (SIBs). The hysteresis abated crystalline phase was obtained by tuning the calcination temperature/time factors for the citric acid assisted sol-gel technique precursor. Powder X-ray diffraction data confirmed that the studied material belongs to a hexagonal crystal system and that, among the materials, the material synthesized at 750 °C/28 h in an air atmosphere in particular showed pure phase formation with an ordered structure. Furthermore, the local atomic arrangement of the synthesized NaCoO2 cathodes was monitored using a Raman spectroscopy technique, revealing five active vibration modes of E1g(O), E2g(O), 2 E2g (Na), and A1g(O), in NaCoO2 to confirm the existence of the hexagonal crystal structure. The surface morphology of the designed materials exhibited a hexagonal shape with a size of 2-5 μm. By tuning the calcination temperature/time factors, the optimized critical parameters of the P2-type NaCoO2 cathode were 750 °C and 28 h, resulting in a well-ordered structure, which enhances Na+ ion storage capacity at a high-rate. Thus, a hysteresis abated P2-type NaCoO2 cathode demonstrated high-rate, stable charge-discharge cycles with 79 mA h g-1 capacity at a rate of 1C with a retention of 99% coulombic efficiency for the 100th cycle. © The Royal Society of Chemistry.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.sourceSustainable Energy and Fuelsen_US
dc.subjectCalcinationen_US
dc.subjectCathodesen_US
dc.subjectCrystal atomic structureen_US
dc.subjectDigital storageen_US
dc.subjectHysteresisen_US
dc.subjectMetal ionsen_US
dc.subjectMorphologyen_US
dc.subjectNanocrystalline materialsen_US
dc.subjectSodium compoundsen_US
dc.subjectSodium metallographyen_US
dc.subjectSol-gelsen_US
dc.subjectSurface morphologyen_US
dc.subjectCalcination temperatureen_US
dc.subjectCharge- discharge rateen_US
dc.subjectCharge-discharge cycleen_US
dc.subjectCoulombic efficiencyen_US
dc.subjectHexagonal crystal structureen_US
dc.subjectHexagonal crystalsen_US
dc.subjectPowder X ray diffractionen_US
dc.subjectWell-ordered structureen_US
dc.subjectSodium-ion batteriesen_US
dc.subjectcrystal structureen_US
dc.subjectelectrodeen_US
dc.subjecthysteresisen_US
dc.subjectinorganic compounden_US
dc.subjectmorphologyen_US
dc.subjectphase transitionen_US
dc.subjectretentionen_US
dc.titleHysteresis abated P2-type NaCoO2cathode reveals highly reversible multiple phase transitions for high-rate sodium-ion batteriesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: