Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDewangan, Sheetal Kumaren_US
dc.contributor.authorSamal, Sumantaen_US
dc.contributor.authorKumar, Vinoden_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:11:44Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:11:44Z-
dc.date.issued2021-
dc.identifier.citationDewangan, S. K., Samal, S., & Kumar, V. (2021). Development of an ANN-based generalized model for hardness prediction of SPSed AlCoCrCuFeMnNiW containing high entropy alloys. Materials Today Communications, 27 doi:10.1016/j.mtcomm.2021.102356en_US
dc.identifier.issn2352-4928-
dc.identifier.otherEID(2-s2.0-85105692686)-
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2021.102356-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7456-
dc.description.abstractThe present study reports the development of AlCrFeMnNiWx (x = 0, 0.05, 0.1, 0.5 mol) high entropy alloys (HEAs), processed by mechanical alloying (MA) cum spark plasma sintering (SPS) techniques, followed by the evaluation of the mechanical properties. Furthermore, an artificial Neural Network (ANN)-based model has been developed for the prediction of the hardness of a particular class of HEAs by using 36 HEAs available data from the literature, which stimulates the data by utilizing training, validation, and testing methods in a useful way with excellent overall regression coefficient (R) is 97.1 %. A backpropagation ANN model (9−9-1 neuron system) has been used to predict the value of the hardness with an accuracy of 95.9 %, which is based on elemental composition and sintering temperature. The predicted capability of the developed model also provides the freedom to choose the HEA composition with the required hardness of HEA without any experimental trials. © 2021en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceMaterials Today Communicationsen_US
dc.subjectAlloying elementsen_US
dc.subjectBackpropagationen_US
dc.subjectEntropyen_US
dc.subjectForecastingen_US
dc.subjectHardnessen_US
dc.subjectHigh-entropy alloysen_US
dc.subjectMechanical alloyingen_US
dc.subjectSpark plasma sinteringen_US
dc.subjectArtificial neural-network based modelingen_US
dc.subjectGeneralized modelsen_US
dc.subjectHardness predictionen_US
dc.subjectHigh entropy alloysen_US
dc.subjectMechanicalen_US
dc.subjectNetwork-baseden_US
dc.subjectNeural-networksen_US
dc.subjectPropertyen_US
dc.subjectSpark plasma sintering techniquesen_US
dc.subjectSpark-plasma-sinteringen_US
dc.subjectNeural networksen_US
dc.titleDevelopment of an ANN-based generalized model for hardness prediction of SPSed AlCoCrCuFeMnNiW containing high entropy alloysen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: