Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7471
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJain, Relianceen_US
dc.contributor.authorJain, Avien_US
dc.contributor.authorDubey, Mrigendraen_US
dc.contributor.authorSamal, Sumantaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:11:47Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:11:47Z-
dc.date.issued2020-
dc.identifier.citationJain, R., Jain, A., Rahul, M. R., Kumar, A., Dubey, M., Sabat, R. K., . . . Phanikumar, G. (2020). Development of ultrahigh strength novel Co–Cr–Fe–Ni–Zr quasi-peritectic high entropy alloy by an integrated approach using experiment and simulation. Materialia, 14 doi:10.1016/j.mtla.2020.100896en_US
dc.identifier.issn2589-1529-
dc.identifier.otherEID(2-s2.0-85090699213)-
dc.identifier.urihttps://doi.org/10.1016/j.mtla.2020.100896-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7471-
dc.description.abstractFor the first time, we report here that (CoCrFeNi)90Zr10 bimodal eutectics high entropy alloy (HEA) consisting of both globular eutectics (i.e., L ⟶ FCC (α) + Ni2Zr-type Laves phases) and lamellar eutectics (i.e., L ⟶FCC (α) + Ni7Zr2) is designed and developed by an integrated approach of using thermodynamic simulation and experimental techniques. The present study explores the understanding of new pseudo-quasiperitectic four-phases equilibrium reaction, i.e., L + Ni2Zr⟶FCC (α)+ Ni7Zr2 in the novel (CoCrFeNi)90Zr10 quasi-peritectic HEA (QHEA). The hot deformation behavior of QHEA has been investigated in the temperature range 1073–1323 K and different strain rates (10−3,10−1,1and 10 s−1). Arrhenius-type constitutive equation and artificial neural network (ANN) model have been used to predict the flow stress of QHEA during thermomechanical processing. The hot workability regimes of QHEA has been identified using multiple model parameters, indicating stable regimes in temperature range 1073–1323K and strain rate range 10−3–10−1.3 s−1 as well as temperature range 1073–1125 K and strain rate range10−3–10−0.75 s−1. The plastic strain field distribution and material flow behavior during hot deformation of newly developed QHEA have been predicted using Finite element simulation. © 2020en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceMaterialiaen_US
dc.subjectBinary alloysen_US
dc.subjectChromium alloysen_US
dc.subjectCobalt alloysen_US
dc.subjectDeformationen_US
dc.subjectEntropyen_US
dc.subjectEutecticsen_US
dc.subjectHigh strength alloysen_US
dc.subjectHigh-entropy alloysen_US
dc.subjectIntegrated controlen_US
dc.subjectIron alloysen_US
dc.subjectPlastic flowen_US
dc.subjectSolidificationen_US
dc.subjectTemperatureen_US
dc.subjectThermomechanical treatmenten_US
dc.subjectArtificial neural network modelsen_US
dc.subjectEquilibrium reactionsen_US
dc.subjectExperimental techniquesen_US
dc.subjectFinite element simulationsen_US
dc.subjectHot deformation behaviorsen_US
dc.subjectPlastic strain fieldsen_US
dc.subjectThermo-mechanical processingen_US
dc.subjectThermodynamic simulationsen_US
dc.subjectStrain rateen_US
dc.titleDevelopment of ultrahigh strength novel Co–Cr–Fe–Ni–Zr quasi-peritectic high entropy alloy by an integrated approach using experiment and simulationen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: