Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7475
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJain, Relianceen_US
dc.contributor.authorDewangan, Sheetal Kumaren_US
dc.contributor.authorKumar, Vinoden_US
dc.contributor.authorSamal, Sumantaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:11:47Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:11:47Z-
dc.date.issued2020-
dc.identifier.citationJain, R., Dewangan, S. K., Kumar, V., & Samal, S. (2020). Artificial neural network approach for microhardness prediction of eight component FeCoNiCrMnVAlNb eutectic high entropy alloys. Materials Science and Engineering A, 797 doi:10.1016/j.msea.2020.140059en_US
dc.identifier.issn0921-5093-
dc.identifier.otherEID(2-s2.0-85090753941)-
dc.identifier.urihttps://doi.org/10.1016/j.msea.2020.140059-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7475-
dc.description.abstractFor the first time, we report here that higher-order eight component Fe32.5-xCo10Ni25Cr15Mn5V10Al2.5Nbx (x = 5, 7.5, 10, and 12.5 at. %) eutectic high entropy alloys (EHEAs) are designed and developed by integrating thermodynamic simulation approach and non-equilibrium solidification processing technique. The developed EHEAs consist of FeCoNiCr-rich FCC solid solution phase and eutectics mixture between FCC solid solution phase and the Co2Nb-type Laves phase. The predicted microhardness of EHEAs for x = 7.5% and x = 10% by using artificial neural networks (ANNs) modeling is 501 H V and 618 H V, respectively, which is in good agreement with experimentally measured values having less than 5% error. © 2020 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceMaterials Science and Engineering Aen_US
dc.subjectEntropyen_US
dc.subjectEutecticsen_US
dc.subjectHigh-entropy alloysen_US
dc.subjectMicrohardnessen_US
dc.subjectSolid solutionsen_US
dc.subjectSolidificationen_US
dc.subjectArtificial neural network approachen_US
dc.subjectEight componenten_US
dc.subjectHigher-orderen_US
dc.subjectLaves-phaseen_US
dc.subjectMeasured valuesen_US
dc.subjectNon-equilibrium solidificationen_US
dc.subjectSolid solution phaseen_US
dc.subjectThermodynamic simulationsen_US
dc.subjectNeural networksen_US
dc.titleArtificial neural network approach for microhardness prediction of eight component FeCoNiCrMnVAlNb eutectic high entropy alloysen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: