Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/7475
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jain, Reliance | en_US |
dc.contributor.author | Dewangan, Sheetal Kumar | en_US |
dc.contributor.author | Kumar, Vinod | en_US |
dc.contributor.author | Samal, Sumanta | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T11:11:47Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T11:11:47Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Jain, R., Dewangan, S. K., Kumar, V., & Samal, S. (2020). Artificial neural network approach for microhardness prediction of eight component FeCoNiCrMnVAlNb eutectic high entropy alloys. Materials Science and Engineering A, 797 doi:10.1016/j.msea.2020.140059 | en_US |
dc.identifier.issn | 0921-5093 | - |
dc.identifier.other | EID(2-s2.0-85090753941) | - |
dc.identifier.uri | https://doi.org/10.1016/j.msea.2020.140059 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/7475 | - |
dc.description.abstract | For the first time, we report here that higher-order eight component Fe32.5-xCo10Ni25Cr15Mn5V10Al2.5Nbx (x = 5, 7.5, 10, and 12.5 at. %) eutectic high entropy alloys (EHEAs) are designed and developed by integrating thermodynamic simulation approach and non-equilibrium solidification processing technique. The developed EHEAs consist of FeCoNiCr-rich FCC solid solution phase and eutectics mixture between FCC solid solution phase and the Co2Nb-type Laves phase. The predicted microhardness of EHEAs for x = 7.5% and x = 10% by using artificial neural networks (ANNs) modeling is 501 H V and 618 H V, respectively, which is in good agreement with experimentally measured values having less than 5% error. © 2020 Elsevier B.V. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.source | Materials Science and Engineering A | en_US |
dc.subject | Entropy | en_US |
dc.subject | Eutectics | en_US |
dc.subject | High-entropy alloys | en_US |
dc.subject | Microhardness | en_US |
dc.subject | Solid solutions | en_US |
dc.subject | Solidification | en_US |
dc.subject | Artificial neural network approach | en_US |
dc.subject | Eight component | en_US |
dc.subject | Higher-order | en_US |
dc.subject | Laves-phase | en_US |
dc.subject | Measured values | en_US |
dc.subject | Non-equilibrium solidification | en_US |
dc.subject | Solid solution phase | en_US |
dc.subject | Thermodynamic simulations | en_US |
dc.subject | Neural networks | en_US |
dc.title | Artificial neural network approach for microhardness prediction of eight component FeCoNiCrMnVAlNb eutectic high entropy alloys | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Metallurgical Engineering and Materials Sciences |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: