Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKitchamsetti, Narasimharaoen_US
dc.contributor.authorDevan, Rupesh S.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:11:50Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:11:50Z-
dc.date.issued2020-
dc.identifier.citationKitchamsetti, N., Choudhary, R. J., Phase, D. M., & Devan, R. S. (2020). Structural correlation of a nanoparticle-embedded mesoporous CoTiO3 perovskite for an efficient electrochemical supercapacitor. RSC Advances, 10(39), 23446-23456. doi:10.1039/d0ra04052een_US
dc.identifier.issn2046-2069-
dc.identifier.otherEID(2-s2.0-85086830443)-
dc.identifier.urihttps://doi.org/10.1039/d0ra04052e-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7494-
dc.description.abstractWe synthesized mesoporous cobalt titanate (CTO) microrods via the sol-gel method as an outstanding working electrode for the supercapacitor. The mesoporous CTO microrods were amassed in hexagonal shapes of an average width of ∼670 nm, and were composed of nanoparticles of average diameter ∼41 nm. The well crystalline CTO microrods of the hexagonal phase to the R3 space group possessed an average pore size distribution of 3.92 nm throughout the microrod. The mesoporous CTO microrods with increased textural boundaries played a vital role in the diffusion of ions, and they provided a specific capacitance of 608.4 F g-1 and a specific power of 4835.7 W kg-1 and a specific energy of 9.77 W h kg-1 in an aqueous 2 M KOH electrolyte, which was remarkably better than those of Ti, La, Cr, Fe, Ni, and Sr-based perovskites or their mixed heterostructures supplemented by metal oxides as an impurity. Furthermore, the diffusion-controlled access to the OH- ions (0.27 μs) deep inside the microrod conveyed high stability, a long life cycle for up to 1950 continuous charging-discharging cycles, and excellent capacitance retention of 82.3%. Overall, the mesoporous CTO shows its potential as an electrode for a long-cycle supercapacitor, and provides opportunities for additional enhancement after developing the core-shell hetero-architecture with other metal oxide materials such as MnO2, and TiO2. This journal is © The Royal Society of Chemistry.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.sourceRSC Advancesen_US
dc.subjectCapacitanceen_US
dc.subjectCobalt compoundsen_US
dc.subjectElectrodesen_US
dc.subjectElectrolytesen_US
dc.subjectLife cycleen_US
dc.subjectManganese oxideen_US
dc.subjectMetalsen_US
dc.subjectNanocrystalline materialsen_US
dc.subjectNanoparticlesen_US
dc.subjectPerovskiteen_US
dc.subjectPore sizeen_US
dc.subjectPotassium hydroxideen_US
dc.subjectSol-gel processen_US
dc.subjectSol-gelsen_US
dc.subjectSupercapacitoren_US
dc.subjectTitanium dioxideen_US
dc.subjectCapacitance retentionen_US
dc.subjectContinuous chargingen_US
dc.subjectDiffusion controlleden_US
dc.subjectElectrochemical supercapacitoren_US
dc.subjectMetal oxide materialsen_US
dc.subjectSpecific capacitanceen_US
dc.subjectStructural correlationen_US
dc.subjectWorking electrodeen_US
dc.subjectMesoporous materialsen_US
dc.titleStructural correlation of a nanoparticle-embedded mesoporous CoTiO3 perovskite for an efficient electrochemical supercapacitoren_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Gold-
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: