Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7544
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSamal, Sumantaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:11:59Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:11:59Z-
dc.date.issued2019-
dc.identifier.citationSonkusare, R., Swain, A., Rahul, M. R., Samal, S., Gurao, N. P., Biswas, K., . . . Nayan, N. (2019). Establishing processing-microstructure-property paradigm in complex concentrated equiatomic CoCuFeMnNi alloy. Materials Science and Engineering A, 759, 415-429. doi:10.1016/j.msea.2019.04.096en_US
dc.identifier.issn0921-5093-
dc.identifier.otherEID(2-s2.0-85065916727)-
dc.identifier.urihttps://doi.org/10.1016/j.msea.2019.04.096-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7544-
dc.description.abstractHot deformation behavior of equiatomic FCC CoCuFeMnNi complex concentrated alloy has been investigated via isothermal compression tests on Gleeble-3800 thermo-mechanical simulator in the temperature (T) range of 1073–1273 K and strain rate (ε˙) range of 1–10−3 s−1. This has been aided with detailed microstructural analysis using SEM, EBSD and TEM to decipher the deformation micro-mechanisms during hot compression tests. The processing maps have been constructed by superimposition of the instability map with efficiency map and the optimum thermo-mechanical processing conditions were found to be T = 1173 K, ε˙ = 10−3 s−1 and T = 1273 K, ε˙ = 10−2 s−1. Microstructural investigation using SEM and EBSD reveal phase separation between Cu-rich and Cu-lean regions wherein Cu-rich FCC phase at the grain boundaries undergoes discontinuous dynamic recrystallization (DDRX) while the Cu-lean phase undergoes dynamic recovery (DRV). The average activation volume in the range of 44–250 b3 suggest that cross slip is the rate controlling mechanism during the deformation and activation energy of 394 kJ/mol, that is almost twice than that for diffusion in copper, indicate contribution from both mechanical and thermal component to the overall activation energy. It is evident that the diffusion assisted copper segregation aids in obtaining higher efficiency of deformation and easy processability due to a unique microstructure comprising of Cu-lean grains surrounded by soft Cu-rich grains near grain boundaries which undergo DDRX. Numerical simulations using finite element method are able to correctly predict hot deformation behavior, establishing the processing-microstructure-property paradigm in CoCuFeMnNi complex concentrated alloy. © 2019 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceMaterials Science and Engineering Aen_US
dc.subjectActivation energyen_US
dc.subjectCobalt alloysen_US
dc.subjectCompression testingen_US
dc.subjectConcentration (process)en_US
dc.subjectCopperen_US
dc.subjectDeformationen_US
dc.subjectDynamic recrystallizationen_US
dc.subjectDynamicsen_US
dc.subjectGrain boundariesen_US
dc.subjectIron alloysen_US
dc.subjectManganese alloysen_US
dc.subjectMicrostructureen_US
dc.subjectNumerical methodsen_US
dc.subjectPhase separationen_US
dc.subjectStrain rateen_US
dc.subjectDDRXen_US
dc.subjectDiscontinuous dynamic recrystallizationen_US
dc.subjectIsothermal compression testsen_US
dc.subjectMicrostructural investigationen_US
dc.subjectProcessing mapsen_US
dc.subjectRate-controlling mechanismen_US
dc.subjectThermo-mechanical processingen_US
dc.subjectThermomechanical simulatoren_US
dc.subjectCopper alloysen_US
dc.titleEstablishing processing-microstructure-property paradigm in complex concentrated equiatomic CoCuFeMnNi alloyen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: