Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7573
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNasir, Mohd Farooqen_US
dc.contributor.authorKumar, Sunilen_US
dc.contributor.authorSen, Somadityaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:12:05Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:12:05Z-
dc.date.issued2019-
dc.identifier.citationNasir, M., Kumar, S., Patra, N., Bhattacharya, D., Jha, S. N., Basaula, D. R., . . . Sen, S. (2019). Role of antisite disorder, rare-earth size, and superexchange angle on band gap, curie temperature, and magnetization of R2NiMnO6Double perovskites. ACS Applied Electronic Materials, 1(1), 141-153. doi:10.1021/acsaelm.8b00062en_US
dc.identifier.issn2637-6113-
dc.identifier.otherEID(2-s2.0-85062389072)-
dc.identifier.urihttps://doi.org/10.1021/acsaelm.8b00062-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7573-
dc.description.abstractHomogeneous solid solutions of sol-gel-prepared R2NiMnO6 (R = La, Pr, Nd, Sm, Gd, Tb, Dy, Y, and Ho) double perovskites crystallize in a B-site-ordered monoclinic structure (P21/n space group). Monoclinic distortion enhances with decreasing R3+ ionic radii (rR3+). The magnetic ordering temperature (TC) decreases from 270 K for La2NiMnO6 to 80 K for Ho2NiMnO6 as rR3+ decreases from 1.16 Å (La3+) to 1.02 Å (Ho3+). An additional magnetic anomaly is observed in Nd2NiMnO6, Sm2NiMnO6, Tb2NiMnO6, and Dy2NiMnO6 at lower temperatures, which originates from the 3d-4f coupling between Mn-Ni and Nd3+/Sm3+/Tb3+/Dy3+ magnetic moments. Further, high saturation magnetization is achieved for all samples, indicating that they are atomically ordered and have less antisite disorders. Upon a decrease in the size of R3+, the local structure shows an expansion of NiO6 octahedra and almost unchanged of MnO6 octahedra. X-ray-absorption near-edge spectroscopy reveals a majority of Ni2+ and Mn4+ ions in all samples. Softening of phonon modes results in the elongation of the Ni/Mn-O bond length. Finally, a correlation among lattice parameters, structural distortion, octahedral tilting, superexchange angle, electronic band gap, Curie temperature, and the rare-earth ionic radius is established. Copyright © 2019 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Electronic Materialsen_US
dc.subjectBinary alloysen_US
dc.subjectBond lengthen_US
dc.subjectCurie temperatureen_US
dc.subjectEnergy gapen_US
dc.subjectLanthanum compoundsen_US
dc.subjectMagnetic momentsen_US
dc.subjectPerovskiteen_US
dc.subjectRare earthsen_US
dc.subjectSaturation magnetizationen_US
dc.subjectSol-gelsen_US
dc.subjectX ray absorptionen_US
dc.subjectElectronic band gapsen_US
dc.subjectHigh-saturation magnetizationen_US
dc.subjectMagnetic ordering temperaturesen_US
dc.subjectMonoclinic distortionen_US
dc.subjectMonoclinic structuresen_US
dc.subjectSoftening of phonon modesen_US
dc.subjectStructural distortionsen_US
dc.subjectX-ray absorption near edge spectroscopyen_US
dc.subjectHolmium compoundsen_US
dc.titleRole of Antisite Disorder, Rare-Earth Size, and Superexchange Angle on Band Gap, Curie Temperature, and Magnetization of R2NiMnO6Double Perovskitesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: