Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7584
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPandey, Rajagopalanen_US
dc.contributor.authorSingh, Vipulen_US
dc.contributor.authorPalani, Anand Iyamperumalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:12:07Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:12:07Z-
dc.date.issued2019-
dc.identifier.citationPandey, R., Maria Joseph Raj, N. P., Singh, V., Iyamperumal Anand, P., & Kim, S. -. (2019). Novel interfacial bulk heterojunction technique for enhanced response in ZnO nanogenerator. ACS Applied Materials and Interfaces, doi:10.1021/acsami.8b19321en_US
dc.identifier.issn1944-8244-
dc.identifier.otherEID(2-s2.0-85061268862)-
dc.identifier.urihttps://doi.org/10.1021/acsami.8b19321-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7584-
dc.description.abstractIn this paper, a direct sustainable approach for the development of a n-ZnO:p-CuO heterojunction (ZCH) through a simple grinding is reported to be an effective technique to enhance the piezoelectric performance of ZCH/polydimethylsiloxane (PDMS) nanocomposite-based nanogenerators (ZP-PNGs). We have first optimized the best concentration for ZnO/PDMS nanocomposite for the realization of the piezoelectric nanogenerator. Later, with the same configuration, we implemented a novel, simple, facile, frugal, and inexpensive technique to fabricate ZCH. The heterojunction results in the improved charge transfer characteristics, low capacitance, and charge nullification contributing to the enhanced piezoelectric output. This reflects in the improvement of the peak-to-peak piezoelectric potential of the device from 2.7 to 9 V. The instantaneous max power density was found to be 0.2 mW/m 2 . The device can work as a force sensor with improved sensitivity of 1.7 V/N compared to 1.05 V/N of the intrinsic device. The device is being systematically studied for load matching and capacitor charging to demonstrate its practicability. Furthermore, we tested our device to harness the biomechanical energy from day-to-day life activities. Finally, the device was used to fabricate sustainable piezoelectric-based smart urinal systems for low-income group countries. Copyright © 2019 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Materials and Interfacesen_US
dc.subjectCharge transferen_US
dc.subjectComposite materialsen_US
dc.subjectCopper oxidesen_US
dc.subjectHeterojunctionsen_US
dc.subjectII-VI semiconductorsen_US
dc.subjectNanocompositesen_US
dc.subjectPiezoelectricityen_US
dc.subjectZinc oxideen_US
dc.subjectBulk heterojunctionen_US
dc.subjectCapacitor chargingen_US
dc.subjectIntrinsic deviceen_US
dc.subjectpiezoelectricen_US
dc.subjectPiezoelectric nanogeneratoren_US
dc.subjectPiezoelectric potentialen_US
dc.subjectPower densitiesen_US
dc.subjectTransfer characteristicsen_US
dc.subjectNanogeneratorsen_US
dc.titleNovel Interfacial Bulk Heterojunction Technique for Enhanced Response in ZnO Nanogeneratoren_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: