Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhosh, Abhijiten_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:12:14Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:12:14Z-
dc.date.issued2018-
dc.identifier.citationChatterjee, A., Ghosh, A., Moitra, A., Bhaduri, A. K., Mitra, R., & Chakrabarti, D. (2018). Role of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperatures. International Journal of Plasticity, 104, 104-133. doi:10.1016/j.ijplas.2018.02.002en_US
dc.identifier.issn0749-6419-
dc.identifier.otherEID(2-s2.0-85042476323)-
dc.identifier.urihttps://doi.org/10.1016/j.ijplas.2018.02.002-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7615-
dc.description.abstractBlocks from a modified 9Cr-1Mo steel plate used for fast breeder reactor application under normalized and tempered condition were hot-rolled at different temperatures (1050-875 °C) applying same amount of deformation, normalized using different austenitizing temperatures (1100-950 °C) and finally tempered at 750 °C. These samples having tempered martensitic microstructures were impact tested over the temperature range of +80 °C to -196 °C. The effect of hierarchical martensitic microstructure with different structural units of varying length scales (i.e. lath, sub-block, block, packet and prior-austenite grain) on the micro-mechanisms of deformation and fracture have been elucidated by studying the propagation of cleavage cracks and the formation of shear cracks within the samples using electron back-scattered diffraction (EBSD) technique and Visco-plastic self-consistent (VPSC) polycrystalline plasticity model. The study indicates strong influence of certain crystallographic variants on the cleavage crack propagation and the 'martensitic block' is found to be the 'effective grain' controlling the impact toughness at low temperatures. Dynamic fracture at high temperatures was dictated by cracking along the shear bands, evolution of which depend on the size and distribution of prior-austenite grains. © 2018 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceInternational Journal of Plasticityen_US
dc.subjectAusteniteen_US
dc.subjectBinary alloysen_US
dc.subjectCrack propagationen_US
dc.subjectCracksen_US
dc.subjectDeformationen_US
dc.subjectFast reactorsen_US
dc.subjectFracture testingen_US
dc.subjectImpact testingen_US
dc.subjectMartensitic steelen_US
dc.subjectMicrostructureen_US
dc.subjectMolybdenum alloysen_US
dc.subjectPlasticity testingen_US
dc.subjectShear flowen_US
dc.subjectSingle crystalsen_US
dc.subjectSteel testingen_US
dc.subjectCrack propagation and arresten_US
dc.subjectCrystal plasticityen_US
dc.subjectCrystallographic variantsen_US
dc.subjectDynamic fracturesen_US
dc.subjectElectron back scattered diffraction techniquesen_US
dc.subjectMartensitic microstructureen_US
dc.subjectPolycrystalline plasticity modelen_US
dc.subjectVisco-plastic self-consistenten_US
dc.subjectChromium alloysen_US
dc.titleRole of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperaturesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: