Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7616
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Vinoden_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:12:15Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:12:15Z-
dc.date.issued2018-
dc.identifier.citationKumar, D., Maulik, O., Kumar, S., Prasad, Y. V. S. S., & Kumar, V. (2018). Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Materials Chemistry and Physics, 210, 71-77. doi:10.1016/j.matchemphys.2017.08.049en_US
dc.identifier.issn0254-0584-
dc.identifier.otherEID(2-s2.0-85028364421)-
dc.identifier.urihttps://doi.org/10.1016/j.matchemphys.2017.08.049-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7616-
dc.description.abstractThe present study describes the synthesis and preliminary characterization of a novel nanocrystalline equiatomic AlCuCrFeMnW high entropy alloy (HEA) via mechanical alloying (MA) followed by spark plasma sintering. A structural property of present HEA was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analysis. XRD of this sintered alloy revealed the formation of ordered B2 phase (AlFe type), sigma phase (Cr rich), FeMn type phase and BCC phase. The particle morphology and composition of present HEA was investigated by scanning electron microscopy (SEM) and electron dispersive spectroscopy (EDS). Differential Scanning Calorimetry (DSC) of this alloy confirmed that there is phase transformation occurs at 918.17 °C, 925.23 °C and 936.11 °C with three different heating rates of 10 K/min, 20 K/min and 30 K/min respectively and activation energy corresponding to this transformation is 160.2 KJmol-1. The microhardness of AlCuCrFeMnW HEA is 891 HV. The phase evolution in this alloy has been considered using thermodynamic parameters, and the structure-property relationship has also been proposed by conventional strengthening mechanisms. © 2017 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceMaterials Chemistry and Physicsen_US
dc.subjectActivation energyen_US
dc.subjectAluminum alloysen_US
dc.subjectBinary alloysen_US
dc.subjectChromium alloysen_US
dc.subjectCopper alloysen_US
dc.subjectDifferential scanning calorimetryen_US
dc.subjectDiffractionen_US
dc.subjectElectron diffractionen_US
dc.subjectElectron microscopyen_US
dc.subjectElectronsen_US
dc.subjectEntropyen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectIron alloysen_US
dc.subjectManganese alloysen_US
dc.subjectMechanical alloyingen_US
dc.subjectNanocrystalsen_US
dc.subjectPhase transitionsen_US
dc.subjectPlasma diagnosticsen_US
dc.subjectPotassium alloysen_US
dc.subjectScanning electron microscopyen_US
dc.subjectSinteringen_US
dc.subjectSpark plasma sinteringen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectTungsten alloysen_US
dc.subjectVanadium alloysen_US
dc.subjectX ray diffraction analysisen_US
dc.subjectHigh entropy alloysen_US
dc.subjectNanocrystallinesen_US
dc.subjectParticle morphologiesen_US
dc.subjectPhase evolutionsen_US
dc.subjectSelected area electron diffractionen_US
dc.subjectStrengthening mechanismsen_US
dc.subjectStructure property relationshipsen_US
dc.subjectThermodynamic parameteren_US
dc.subjectNanocrystalline alloysen_US
dc.titlePhase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sinteringen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: