Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7633
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharma, Alfaen_US
dc.contributor.authorKumar, Y. B.Kishoreen_US
dc.contributor.authorMazumder, Kushalen_US
dc.contributor.authorShirage, Parasharam Marutien_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:12:18Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:12:18Z-
dc.date.issued2018-
dc.identifier.citationSharma, A., Kumar, Y., Mazumder, K., Rana, A. K., & Shirage, P. M. (2018). Controlled Zn1-xNixO nanostructures for an excellent humidity sensor and a plausible sensing mechanism. New Journal of Chemistry, 42(11), 8445-8457. doi:10.1039/c7nj04801gen_US
dc.identifier.issn1144-0546-
dc.identifier.otherEID(2-s2.0-85048054844)-
dc.identifier.urihttps://doi.org/10.1039/c7nj04801g-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7633-
dc.description.abstractHere, we report on the chemi-resistive humidity sensing behavior of a Zn1-xNixO nanomaterial synthesized using a wet chemical method. At room temperature, the x = 0.10 sample shows excellent humidity sensitivity of 152% and a response/recovery time of 27/3 s within the 33-97% relative humidity (RH) range. The experimental data observed over the entire range of RH values can be well-fitted to a Freundlich adsorption isotherm model, which reveals two distinct water adsorption regimes. The obtained results suggest that the x = 0.10 sample has the highest adsorption strength. Theoretical humidity detection limits for the x = 0, 0.05 and 0.10 samples are found to be about 7.24% RH, 6.31% RH and 3.71% RH, respectively. The excellent humidity sensing observed using the ZnO and Ni doped ZnO nanostructures is attributed to a Grotthuss mechanism, considering the distribution of available adsorption sites. Therefore, Ni doped ZnO nanostructures synthesized via employing an economical wet chemical technique demonstrate promising capabilities to act as potential candidates for the fabrication of next-generation humidity sensors. © 2018 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.sourceNew Journal of Chemistryen_US
dc.subjectmetal nanoparticleen_US
dc.subjectmetal oxideen_US
dc.subjectnickelen_US
dc.subjectnickel oxide nanoparticleen_US
dc.subjectunclassified drugen_US
dc.subjectzinc oxide nanoparticleen_US
dc.subjectadsorptionen_US
dc.subjectArticleen_US
dc.subjectchemical structureen_US
dc.subjecthumidityen_US
dc.subjectlimit of detectionen_US
dc.subjectmodelen_US
dc.subjectnanofabricationen_US
dc.subjectpriority journalen_US
dc.subjectroom temperatureen_US
dc.subjectsynthesisen_US
dc.titleControlled Zn1-xNixO nanostructures for an excellent humidity sensor and a plausible sensing mechanismen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: