Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Y. B.Kishoreen_US
dc.contributor.authorShirage, Parasharam Marutien_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:12:23Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:12:23Z-
dc.date.issued2017-
dc.identifier.citationKumar, Y., & Shirage, P. M. (2017). Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach. Journal of Materials Science, 52(9), 4840-4851. doi:10.1007/s10853-016-0719-5en_US
dc.identifier.issn0022-2461-
dc.identifier.otherEID(2-s2.0-85008221003)-
dc.identifier.urihttps://doi.org/10.1007/s10853-016-0719-5-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7657-
dc.description.abstractThe report states that well-dispersed CoFe2O4 nanoparticles (NPs) with controllable morphology were prepared using an economical and facile one-pot thermal decomposition approach. Cobalt (II) acetylacetonate and Iron (III) acetylacetonate were employed as precursors instead of expensive and toxic pentacarbonyl. The transmission electron microscopy and powder X-ray diffraction investigation show that CoFe2O4 NPs possess cubic morphology, homogeneous size distribution and pure phase structure. Optical band gap was tuned from 1.147 to 0.92 eV and saturation magnetization (Ms) increased from 53.91 to 84.01 emu/g for the as-prepared and annealed (700 °C) NPs. The coercivity (Hc) enhanced from 1137 to 2109 Oe at room temperature, which is the highest value reported to date for CoFe2O4 NPs synthesized by thermal decomposition. All CoFe2O4 (as-prepared and annealed) NPs showed excellent ferromagnetism behaviour at room temperature. Raman studies of CoFe2O4 NPs confirm the redistribution of Co2+ from octahedral to tetrahedral site. The work demonstrates the great potential of CoFe2O4 NPs as a promising alternative for data storage device applications as well as for opto-magnetic devices. © 2017, Springer Science+Business Media New York.en_US
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.sourceJournal of Materials Scienceen_US
dc.subjectCoercive forceen_US
dc.subjectDecompositionen_US
dc.subjectDigital storageen_US
dc.subjectEnergy gapen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectMagnetic storageen_US
dc.subjectMagnetizationen_US
dc.subjectNanoparticlesen_US
dc.subjectPhase structureen_US
dc.subjectThermolysisen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectVirtual storageen_US
dc.subjectX ray diffractionen_US
dc.subjectCobalt acetylacetonateen_US
dc.subjectControllable morphologyen_US
dc.subjectData storage devicesen_US
dc.subjectDecomposition approachen_US
dc.subjectIron acetylacetonateen_US
dc.subjectNanoparticle (NPs)en_US
dc.subjectPowder X ray diffractionen_US
dc.subjectTetrahedral sitesen_US
dc.subjectSaturation magnetizationen_US
dc.titleHighest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approachen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: