Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7675
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPal, Dipayanen_US
dc.contributor.authorMathur, Aakashen_US
dc.contributor.authorSingh, Ajaib K.en_US
dc.contributor.authorDutta, Surjendu Bikashen_US
dc.contributor.authorChattopadhyay, Sudeshnaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:12:28Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:12:28Z-
dc.date.issued2017-
dc.identifier.citationPal, D., Mathur, A., Singh, A., Singhal, J., Sengupta, A., Dutta, S., . . . Chattopadhyay, S. (2017). Tunable optical properties in atomic layer deposition grown ZnO thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 35(1) doi:10.1116/1.4967296en_US
dc.identifier.issn0734-2101-
dc.identifier.otherEID(2-s2.0-84994845413)-
dc.identifier.urihttps://doi.org/10.1116/1.4967296-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7675-
dc.description.abstractZnO thin films with very low surface roughness and bulklike electron density were grown on Si and SiO2 by atomic layer deposition. The real and imaginary parts of the complex dielectric function of ZnO on Si show monotonically decreasing values with decreasing film thickness at and below a threshold of about 20 nm. On the other hand, x-ray reflectivity results show that the electron density of our ZnO films is close to that of bulk ZnO and does not vary considerably with film thickness. While the reduction of the dielectric function cannot be explained by the electron density of our ZnO films, the Tanguy-Elliott amplitude prefactor governing the strength of optical interband transitions can explain our results consistently through the lowering of the electron-hole overlap factor at the ZnO/Si interface. In the case of ZnO/Si, a staggered type-II (spatially indirect) quantum well, holes are scattered into the Si substrate, causing a lowering of the electron-hole overlap factor and thus the reduction of excitonic absorption, consequently a decrease in the real and the imaginary parts of the dielectric function. This hypothesis was confirmed with ZnO films grown on SiO2, where a thin type-I quantum well, consisting of a narrower-bandgap semiconductor grown on a wider-bandgap (insulator) substrate, in which both the electron and the hole are confined in the ZnO thin film, leads to an increase in the electron-hole overlap matrix element with decreasing film thickness due to confinement, resulting in enhancement of the excitonic absorption in thinner ZnO films on SiO2. © 2016 American Vacuum Society.en_US
dc.language.isoenen_US
dc.publisherAVS Science and Technology Societyen_US
dc.sourceJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Filmsen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCarrier concentrationen_US
dc.subjectDielectric materialsen_US
dc.subjectElectron density measurementen_US
dc.subjectElectronsen_US
dc.subjectEnergy gapen_US
dc.subjectFilm thicknessen_US
dc.subjectII-VI semiconductorsen_US
dc.subjectInterfaces (materials)en_US
dc.subjectLow-k dielectricen_US
dc.subjectMagnetic semiconductorsen_US
dc.subjectMetallic filmsen_US
dc.subjectOptical filmsen_US
dc.subjectOptical propertiesen_US
dc.subjectSemiconductor quantum wellsen_US
dc.subjectSilicaen_US
dc.subjectSiliconen_US
dc.subjectSubstratesen_US
dc.subjectSurface roughnessen_US
dc.subjectWide band gap semiconductorsen_US
dc.subjectZinc oxideen_US
dc.subjectBand-gap semiconductorsen_US
dc.subjectComplex dielectric functionsen_US
dc.subjectDielectric functionsen_US
dc.subjectExcitonic absorptionen_US
dc.subjectLow surface roughnessen_US
dc.subjectOptical interband transitionsen_US
dc.subjectTunable optical propertiesen_US
dc.subjectX ray reflectivityen_US
dc.subjectThin filmsen_US
dc.titleTunable optical properties in atomic layer deposition grown ZnO thin filmsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Bronze-
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: