Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7799
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPakhira, Srimantaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:14:00Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:14:00Z-
dc.date.issued2021-
dc.identifier.citationLei, Y., Pakhira, S., Fujisawa, K., Liu, H., Guerrero-Bermea, C., Zhang, T., . . . Terrones, M. (2021). Low temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysis. Materials Today, 51, 108-116. doi:10.1016/j.mattod.2021.09.017en_US
dc.identifier.issn1369-7021-
dc.identifier.otherEID(2-s2.0-85119169990)-
dc.identifier.urihttps://doi.org/10.1016/j.mattod.2021.09.017-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7799-
dc.description.abstractHexagonal boron nitride (hBN) has long been considered chemically inert due to its wide bandgap and robust covalent bonds. Its inertness hinders hBN from functionalization for energy conversion applications. A question arising is whether it is possible to make hBN chemically reactive. Here, we report cryomilling in liquid N2, as an effective strategy to activate the chemical reactivity of hBN by engineering different vacancies to produce defective-BN (d-BN). The local reactivity of the vacancies is probed by photoluminescence (PL) emissions and electron spin resonance spectroscopy (ESR). Density functional theory calculations reveal that the formation of different vacancies with/without oxygen cause the creation of mid-gap states that are responsible for the PL emissions in the visible region. These vacancies also generate localized free radicals which are both theoretically and experimentally confirmed by spin density calculations and ESR. Due to the vacancy induced free radicals and Fermi level shifts, d-BN can be controllably functionalized with single metal atoms by the spontaneous reduction of metal cations; mono-metallic or bi-metallic clusters can also be effectively reduced. As a proof of concept, the surface-bound metal nanostructures, especially substrate confined single metal atoms, exhibit improved hydrogen evolution catalytic performance, and can be further used for sensing, and quantum information. © 2021 The Author(s)en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceMaterials Todayen_US
dc.subjectAtomsen_US
dc.subjectBoron nitrideen_US
dc.subjectDensity functional theoryen_US
dc.subjectElectron spin resonance spectroscopyen_US
dc.subjectEnergy conversionen_US
dc.subjectFree radicalsen_US
dc.subjectIII-V semiconductorsen_US
dc.subjectMagnetic momentsen_US
dc.subjectNitridesen_US
dc.subjectReductionen_US
dc.subjectTemperatureen_US
dc.subjectTransition metalsen_US
dc.subjectBoron nitrideen_US
dc.subjectDefect engineeringen_US
dc.subjectDensity functional theoryen_US
dc.subjectDensity-functional-theoryen_US
dc.subjectMetal reductionen_US
dc.subjectPhotoluminescence emissionen_US
dc.subjectSingle atom catalyseen_US
dc.subjectSingle metal atomsen_US
dc.subjectSingle-atomsen_US
dc.subjectTransition metal reductionen_US
dc.subjectCatalysisen_US
dc.titleLow temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysisen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Hybrid Gold-
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: