Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7905
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMishra, Ankiten_US
dc.contributor.authorJalan, Sarikaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:14:20Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:14:20Z-
dc.date.issued2021-
dc.identifier.citationMishra, A., Bandyopadhyay, J. N., & Jalan, S. (2021). Multifractal analysis of eigenvectors of small-world networks. Chaos, Solitons and Fractals, 144 doi:10.1016/j.chaos.2021.110745en_US
dc.identifier.issn0960-0779-
dc.identifier.otherEID(2-s2.0-85100607163)-
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2021.110745-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7905-
dc.description.abstractMany real-world complex systems have small-world topology characterized by the high clustering of nodes and short path lengths. It is well-known that higher clustering drives localization while shorter path length supports delocalization of the eigenvectors of networks. Using multifractals technique, we investigate localization properties of the eigenvectors of the adjacency matrices of small-world networks constructed using Watts-Strogatz algorithm. We find that the central part of the eigenvalue spectrum is characterized by strong multifractality whereas the tail part of the spectrum have Dq → 1. Before the onset of the small-world transition, an increase in the random connections leads to an enhancement in the eigenvectors localization, whereas just after the onset, the eigenvectors show a gradual decrease in the localization. We have verified an existence of sharp change in the correlation dimension at the localization-delocalization transition. © 2021 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceChaos, Solitons and Fractalsen_US
dc.subjectFractalsen_US
dc.subjectSmall-world networksen_US
dc.subjectAdjacency matricesen_US
dc.subjectCorrelation dimensionsen_US
dc.subjectEigenvalue spectraen_US
dc.subjectLocalization propertiesen_US
dc.subjectLocalization-delocalization transitionsen_US
dc.subjectMultifractal analysisen_US
dc.subjectSmall world topologyen_US
dc.subjectWatts-Strogatz algorithmsen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.titleMultifractal analysis of eigenvectors of small-world networksen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: