Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7944
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakraborty, Sudipen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:14:28Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:14:28Z-
dc.date.issued2020-
dc.identifier.citationGhosh, A., Kumar, A., Das, T., Ghosh, A., Chakraborty, S., Kar, M., . . . Mitra, S. (2020). Lewis Acid–Base interactions between polysulfides and boehmite enables stable room-temperature Sodium–Sulfur batteries. Advanced Functional Materials, 30(50) doi:10.1002/adfm.202005669en_US
dc.identifier.issn1616-301X-
dc.identifier.otherEID(2-s2.0-85090792469)-
dc.identifier.urihttps://doi.org/10.1002/adfm.202005669-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7944-
dc.description.abstractRoom-temperature sodium–sulfur (RT Na–S) batteries are among the ideal candidates for grid-scale energy storage due to their high theoretical energy density. However, rapid dissolution of polysulfides along with extremely slow redox kinetics lead to a low practical cell capacity and inferior cycling stability, inhibiting their practical applications. Herein, an innovative design strategy is introduced for a chemical and structural synergistic immobilization of sodium-polysulfides in the cathode structure. An aluminum oxyhydroxide (AlOOH) nanosheets decorated sulfur/carbon black nanocomposite (S@CB@AlOOH) is used as an efficient cathode material for stable RT Na–S batteries. The cathode material exhibits extremely stable cycling performance, delivering an initial specific capacity of 392 mA h g–1 and retains 378 mA h g–1 after 500 cycles at 1C. The excellent performance is attributed to the synergistic effect of the structural encapsulation as well as chemical immobilization of polysulfides, significantly suppressing their gradual dissolution into liquid electrolyte. Density functional theory (DFT) calculations reveal that through favorable Lewis acid–base interactions, AlOOH catalyzes the redox conversion of the higher-order polysulfides (Na2Sn, 6 ≤ n ≤ 8) to the lower-order polysulfides (Na2Sx, 1 ≤ x ≤ 2). The importance of Lewis acid–base catalysis to enhance the overall performance of these batteries is demonstrated. © 2020 Wiley-VCH GmbHen_US
dc.language.isoenen_US
dc.publisherWiley-VCH Verlagen_US
dc.sourceAdvanced Functional Materialsen_US
dc.subjectAluminum compoundsen_US
dc.subjectBinary alloysen_US
dc.subjectCatalysisen_US
dc.subjectCathode materialsen_US
dc.subjectCathodesen_US
dc.subjectCorundumen_US
dc.subjectDensity functional theoryen_US
dc.subjectDesign for testabilityen_US
dc.subjectDissolutionen_US
dc.subjectElectrolytesen_US
dc.subjectEnergy storageen_US
dc.subjectPolysulfidesen_US
dc.subjectSecondary batteriesen_US
dc.subjectSodium alloysen_US
dc.subjectSulfuren_US
dc.subjectTin alloysen_US
dc.subjectCathode structureen_US
dc.subjectChemical immobilizationen_US
dc.subjectCycling stabilityen_US
dc.subjectInnovative designen_US
dc.subjectLiquid electrolytesen_US
dc.subjectRedox conversionen_US
dc.subjectSpecific capacitiesen_US
dc.subjectSynergistic effecten_US
dc.subjectSodium compoundsen_US
dc.titleLewis Acid–Base Interactions between Polysulfides and Boehmite Enables Stable Room-Temperature Sodium–Sulfur Batteriesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: