Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7950
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJalan, Sarikaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:14:29Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:14:29Z-
dc.date.issued2020-
dc.identifier.citationKalyakulina, A., Iannuzzi, V., Sazzini, M., Garagnani, P., Jalan, S., Franceschi, C., . . . Giuliani, C. (2020). Investigating mitonuclear genetic interactions through machine learning: A case study on cold adaptation genes in human populations from different european climate regions. Frontiers in Physiology, 11 doi:10.3389/fphys.2020.575968en_US
dc.identifier.issn1664-042X-
dc.identifier.otherEID(2-s2.0-85096681088)-
dc.identifier.urihttps://doi.org/10.3389/fphys.2020.575968-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7950-
dc.description.abstractCold climates represent one of the major environmental challenges that anatomically modern humans faced during their dispersal out of Africa. The related adaptive traits have been achieved by modulation of thermogenesis and thermoregulation processes where nuclear (nuc) and mitochondrial (mt) genes play a major role. In human populations, mitonuclear genetic interactions are the result of both the peculiar genetic history of each human group and the different environments they have long occupied. This study aims to investigate mitonuclear genetic interactions by considering all the mitochondrial genes and 28 nuclear genes involved in brown adipose tissue metabolism, which have been previously hypothesized to be crucial for cold adaptation. For this purpose, we focused on three human populations (i.e., Finnish, British, and Central Italian people) of European ancestry from different biogeographical and climatic areas, and we used a machine learning approach to identify relevant nucDNA–mtDNA interactions that characterized each population. The obtained results are twofold: (i) at the methodological level, we demonstrated that a machine learning approach is able to detect patterns of genetic structure among human groups from different latitudes both at single genes and by considering combinations of mtDNA and nucDNA loci; (ii) at the biological level, the analysis identified population-specific nuclear genes and variants that likely play a relevant biological role in association with a mitochondrial gene (such as the “obesity gene” FTO in Finnish people). Further studies are needed to fully elucidate the evolutionary dynamics (e.g., migration, admixture, and/or local adaptation) that shaped these nucDNA–mtDNA interactions and their functional role. © Copyright © 2020 Kalyakulina, Iannuzzi, Sazzini, Garagnani, Jalan, Franceschi, Ivanchenko and Giuliani.en_US
dc.language.isoenen_US
dc.publisherFrontiers Media S.A.en_US
dc.sourceFrontiers in Physiologyen_US
dc.subjectmitochondrial DNAen_US
dc.subjectADRA1A geneen_US
dc.subjectADRB3 geneen_US
dc.subjectArticleen_US
dc.subjectATP6 geneen_US
dc.subjectATP8 geneen_US
dc.subjectbiogeographyen_US
dc.subjectBritish citizenen_US
dc.subjectbrown adipose tissueen_US
dc.subjectCIDEA geneen_US
dc.subjectclimateen_US
dc.subjectCO1 geneen_US
dc.subjectCO2 geneen_US
dc.subjectCO3 geneen_US
dc.subjectcold acclimatizationen_US
dc.subjectcontrolled studyen_US
dc.subjectCREB1 geneen_US
dc.subjectCYB geneen_US
dc.subjectDIO2 geneen_US
dc.subjectEuropeanen_US
dc.subjectFinn (citizen)en_US
dc.subjectFTO geneen_US
dc.subjectgeneen_US
dc.subjectgene functionen_US
dc.subjectgene interactionen_US
dc.subjectgene locusen_US
dc.subjectgene structureen_US
dc.subjectgenetic analysisen_US
dc.subjectgenetic associationen_US
dc.subjectHOXA1 geneen_US
dc.subjectHOXC4 geneen_US
dc.subjecthumanen_US
dc.subjectItalian (citizen)en_US
dc.subjectlatitudeen_US
dc.subjectLEP geneen_US
dc.subjectLEPR geneen_US
dc.subjectLIPE geneen_US
dc.subjectmachine learningen_US
dc.subjectmitochondrial geneen_US
dc.subjectND1 geneen_US
dc.subjectND2 geneen_US
dc.subjectND3 geneen_US
dc.subjectND4 geneen_US
dc.subjectND5 geneen_US
dc.subjectND6 geneen_US
dc.subjectNRF1 geneen_US
dc.subjectNRIP1 geneen_US
dc.subjectobesityen_US
dc.subjectPLIN1 geneen_US
dc.subjectPLIN2 geneen_US
dc.subjectPLIN3 geneen_US
dc.subjectPLIN5 geneen_US
dc.subjectPPARG geneen_US
dc.subjectPPARGC1A geneen_US
dc.subjectPPARGC1B geneen_US
dc.subjectPRDM16 geneen_US
dc.subjectPRKAR1A geneen_US
dc.subjectPRKAR1B geneen_US
dc.subjectPRKAR2A geneen_US
dc.subjectPRKAR2B geneen_US
dc.subjectRNR1 geneen_US
dc.subjecttissue metabolismen_US
dc.subjectUCP1 geneen_US
dc.subjectUCP2 geneen_US
dc.subjectUCP3 geneen_US
dc.titleInvestigating Mitonuclear Genetic Interactions Through Machine Learning: A Case Study on Cold Adaptation Genes in Human Populations From Different European Climate Regionsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Gold, Green-
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: