Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakraborty, Sudipen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:14:30Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:14:30Z-
dc.date.issued2020-
dc.identifier.citationBiswas, A., Shiva Shanker, G., Das, T., Mandal, R., Chakraborty, S., & Ogale, S. (2020). Enhanced electrocatalytic oxygen evolution activity in geometrically designed SrRuO3 thin films. Applied Surface Science, 529 doi:10.1016/j.apsusc.2020.147065en_US
dc.identifier.issn0169-4332-
dc.identifier.otherEID(2-s2.0-85087334052)-
dc.identifier.urihttps://doi.org/10.1016/j.apsusc.2020.147065-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7953-
dc.description.abstractFor generation of sustainable, clean and highly efficient energy, the electrocatalytic oxygen evolution reaction represents an attractive platform, thus inviting immense research activities in recent years. However, designing the catalyst with enhanced electrocatalytic activity remains one of the major challenges. Here, we examined the oxygen evolution reaction activities of geometrically designed (with and without step-textured morphology) thin films of an electrocatalytically active correlated metallic SrRuO3 perovskite grown on c- and r-plane sapphire substrates. On c-plane sapphire, as compared to the uniform surface, the step-textured films endowed with active Ru-sites show remarkable decrease in the overpotential (~25 mV). Interestingly, the behavior is opposite for the r-plane case, highlighting the significance of the active sites, in addition with the polar surface termination of selective crystal facets. Density functional theory calculation confirms the favorable energy reaction pathway for the active site dependent enhancement in OER. Our strategy might pave the way towards designing the surfaces of various oxide thin films for high performance energy conversion based devices. © 2020en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceApplied Surface Scienceen_US
dc.subjectCatalyst activityen_US
dc.subjectDensity functional theoryen_US
dc.subjectElectrocatalysisen_US
dc.subjectEnergy conversionen_US
dc.subjectMorphologyen_US
dc.subjectOxide filmsen_US
dc.subjectOxygenen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectPerovskiteen_US
dc.subjectRuthenium compoundsen_US
dc.subjectSapphireen_US
dc.subjectStrontium compoundsen_US
dc.subjectTexturesen_US
dc.subjectC-plane sapphireen_US
dc.subjectElectrocatalyticen_US
dc.subjectElectrocatalytic activityen_US
dc.subjectOxide thin filmsen_US
dc.subjectOxygen evolutionen_US
dc.subjectOxygen evolution activityen_US
dc.subjectReaction pathwaysen_US
dc.subjectResearch activitiesen_US
dc.subjectThin filmsen_US
dc.titleEnhanced electrocatalytic oxygen evolution activity in geometrically designed SrRuO3 thin filmsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: