Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7963
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSagdeo, Pankaj R.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:14:32Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:14:32Z-
dc.date.issued2020-
dc.identifier.citationLate, R., Wagaskar, K. V., Shelke, P. B., Sagdeo, A., Rajput, P., & Sagdeo, P. R. (2020). Structural, optical, and dielectric investigations in bulk PrCrO3. Journal of Materials Science: Materials in Electronics, 31(19), 16379-16388. doi:10.1007/s10854-020-04189-7en_US
dc.identifier.issn0957-4522-
dc.identifier.otherEID(2-s2.0-85089364969)-
dc.identifier.urihttps://doi.org/10.1007/s10854-020-04189-7-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7963-
dc.description.abstractThe polycrystalline powder samples of PrCrO3 have been prepared using conventional solid-state synthesis method. Structural investigations are carried out using Raman spectroscopy and synchrotron X-ray diffraction (SXRD) followed by Rietveld refinement of diffraction data. Investigations of diffraction data suggest that these samples possess centrosymmetric orthorhombic structure with space group Pnma(orPbnm). The valence (charge) state of Cr in PrCrO3 has been determined from X-ray absorption near edge spectroscopy (XANES). Optical properties are studied using diffuse reflectance spectroscopy technique. Optical absorption study reveals that absorption in PrCrO3 ceramic is dominated by d–d electrons of chromium cation (Cr3+). The synthesized compound found to have energy bandgap of 3.20 eV. Based on the results observed, energy level diagram for PrCrO3 has been presented. High dielectric permittivity (ε′) of the order 3 × 10 3 is observed for the studied sample. Impedance spectroscopy measurement at room temperature on sintered pellet indicates electronic inhomogeneity in the samples as demonstrated by the presence of dielectric relaxation processes associated with highly conducting grain and low conducting grain boundaries. The relaxation mechanism has been explained on the basis of Cole–Cole model. Observed high dielectric permittivity (ε′) and optical energy bandgap (Eg) indicates that PrCrO3 may find promising application in optoelectronic devices. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceJournal of Materials Science: Materials in Electronicsen_US
dc.subjectChromium metallographyen_US
dc.subjectDielectric relaxationen_US
dc.subjectEnergy gapen_US
dc.subjectGrain boundariesen_US
dc.subjectLight absorptionen_US
dc.subjectOptical propertiesen_US
dc.subjectOptoelectronic devicesen_US
dc.subjectPermittivityen_US
dc.subjectRietveld refinementen_US
dc.subjectSpectroscopyen_US
dc.subjectX ray absorptionen_US
dc.subjectDiffuse reflectance spectroscopyen_US
dc.subjectImpedance spectroscopy measurementsen_US
dc.subjectOptical absorption studiesen_US
dc.subjectOrthorhombic structuresen_US
dc.subjectSolid state synthesis methoden_US
dc.subjectStructural investigationen_US
dc.subjectSynchrotron x ray diffractionen_US
dc.subjectX-ray absorption near edge spectroscopyen_US
dc.subjectPraseodymium compoundsen_US
dc.titleStructural, optical, and dielectric investigations in bulk PrCrO3en_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: