Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8014
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAyaz, Saniyaen_US
dc.contributor.authorMishra, Prashant Kumaren_US
dc.contributor.authorSen, Somadityaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:14:43Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:14:43Z-
dc.date.issued2020-
dc.identifier.citationSaniya Ayaz, Mishra, P. K., Sharma, R. K., Kamal, S., & Sen, S. (2020). Structural, optoelectronic, and electrochemical properties of Zn1- x(Ga0.5Al0.5)xO nanoparticles for supercapacitor applications. ACS Applied Nano Materials, 3(5), 4562-4573. doi:10.1021/acsanm.0c00636en_US
dc.identifier.issn2574-0970-
dc.identifier.otherEID(2-s2.0-85087931034)-
dc.identifier.urihttps://doi.org/10.1021/acsanm.0c00636-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8014-
dc.description.abstractThe structural, optoelectronic, and electrochemical properties of the sol-gel prepared Zn1-x(Ga0.5Al0.5)xO samples are explored for their possible supercapacitor applications. Rietveld analysis of X-ray diffraction patterns confirms that all samples crystallize in a single wurtzite structure. Ga and Al incorporation in ZnO leads to generate lattice strain in a host lattice, resulting in reduction in the crystalline nature of the samples. The variation in the band gap with increasing Ga and Al content was found to be better scaled with the lattice parameters. Photoluminescence studies suggest a defective lattice for x = 0.03, because of the formation of more defect states such as oxygen vacancies near the band-edges. X-ray photoelectron spectroscopy analysis at the O 1s edges supports the presence of oxygen-related defects in the samples. A varying color emission from yellow to orange was observed with the codoping as revealed from photoluminescence studies. However, oxygen interstitial defects result in enhanced conductivity for the x = 0.01 sample. The enhanced electrochemical performance was also achieved for the x = 0.01 sample with a higher specific capacitance. The simultaneous doping of Ga and Al gives a more extensive range of physical, optoelectronic, and electrochemical properties of ZnO nanoparticles for supercapacitor applications. Copyright © 2020 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Nano Materialsen_US
dc.subjectAluminumen_US
dc.subjectElectrochemical propertiesen_US
dc.subjectEnergy gapen_US
dc.subjectGalliumen_US
dc.subjectII-VI semiconductorsen_US
dc.subjectNanoparticlesen_US
dc.subjectOxide mineralsen_US
dc.subjectPhotoluminescenceen_US
dc.subjectRietveld analysisen_US
dc.subjectSol-gelsen_US
dc.subjectSupercapacitoren_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectZinc oxideen_US
dc.subjectZinc sulfideen_US
dc.subjectZnO nanoparticlesen_US
dc.subjectElectrochemical performanceen_US
dc.subjectEnhanced conductivityen_US
dc.subjectInterstitial defectsen_US
dc.subjectOxygen-related defectsen_US
dc.subjectSimultaneous dopingen_US
dc.subjectSpecific capacitanceen_US
dc.subjectSupercapacitor applicationen_US
dc.subjectWurtzite structureen_US
dc.subjectOxygen vacanciesen_US
dc.titleStructural, Optoelectronic, and Electrochemical Properties of Zn1- x(Ga0.5Al0.5)xO Nanoparticles for Supercapacitor Applicationsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: